Loading…
Use of a Genetic Algorithm for Neuron Model Specification
We have used a genetic algorithm (GA) to develop simple firing neuron models consisting of a single compartment with one inward and one outward current. The GA not only chooses the model parameters, but also chooses the formulation of the ionic currents (i.e. single-variable, two-variable, instantan...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have used a genetic algorithm (GA) to develop simple firing neuron models consisting of a single compartment with one inward and one outward current. The GA not only chooses the model parameters, but also chooses the formulation of the ionic currents (i.e. single-variable, two-variable, instantaneous, or leak). The fitness function of the GA compares the output of the GA generated models to an I-F curve of a nominal Morris-Lecar (ML) model. Initially, several different classes of models compete among the population. However, the GA converges to a population containing only ML-type firing models with an instantaneous inward and single-variable outward current. Simulations where ML-type models are not allowed in the population are also investigated. This GA approach allows the exploration of a universe of feasible model classes that is less constrained by model formulation assumptions than traditional parameter estimation approaches |
---|---|
ISSN: | 1948-3546 1948-3554 |
DOI: | 10.1109/CNE.2005.1419618 |