Loading…
ART2-based genetic watermarking
A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for waterm...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 734 vol.1 |
container_issue | |
container_start_page | 729 |
container_title | |
container_volume | 1 |
creator | Ying-Lan Chang Koun-Tem Sun Yueh-Hong Chen |
description | A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression. |
doi_str_mv | 10.1109/AINA.2005.122 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1423576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1423576</ieee_id><sourcerecordid>1423576</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3145e865caea57e7f4dc3f5aab5658dc3a131ffb08f4f353922813472dfed0963</originalsourceid><addsrcrecordid>eNotjktLw0AURgcfYKxdunJh_8Ckd-6dO49lKD4KxYJk4a5MkjslPookAfHfW9HVd1bnfEpdGyiNgbis1k9ViQBcGsQTVSARanYcTtU8-gDeRUa00Z6pwjCDtpZfLtTlOL4CkLOeC3VbPdeomzRKt9jLQaa-XXylSYaPNLz1h_2VOs_pfZT5_85UfX9Xrx71ZvuwXlUb3UeYNBnLEhy3SRJ78dl2LWVOqfm9c-RkyOTcQMg2E1NEDIasxy5LB9HRTN38aXsR2X0O_TH_vTMWib2jHxHiPd0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ART2-based genetic watermarking</title><source>IEEE Xplore All Conference Series</source><creator>Ying-Lan Chang ; Koun-Tem Sun ; Yueh-Hong Chen</creator><creatorcontrib>Ying-Lan Chang ; Koun-Tem Sun ; Yueh-Hong Chen</creatorcontrib><description>A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.</description><identifier>ISSN: 1550-445X</identifier><identifier>ISBN: 9780769522494</identifier><identifier>ISBN: 0769522491</identifier><identifier>EISSN: 2332-5658</identifier><identifier>DOI: 10.1109/AINA.2005.122</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Constraint optimization ; Discrete cosine transforms ; Genetic algorithms ; Internet ; Neural networks ; Optimized production technology ; Robustness ; Sun ; Watermarking</subject><ispartof>19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers), 2005, Vol.1, p.729-734 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1423576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1423576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Lan Chang</creatorcontrib><creatorcontrib>Koun-Tem Sun</creatorcontrib><creatorcontrib>Yueh-Hong Chen</creatorcontrib><title>ART2-based genetic watermarking</title><title>19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers)</title><addtitle>AINA</addtitle><description>A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.</description><subject>Computer science</subject><subject>Constraint optimization</subject><subject>Discrete cosine transforms</subject><subject>Genetic algorithms</subject><subject>Internet</subject><subject>Neural networks</subject><subject>Optimized production technology</subject><subject>Robustness</subject><subject>Sun</subject><subject>Watermarking</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>9780769522494</isbn><isbn>0769522491</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjktLw0AURgcfYKxdunJh_8Ckd-6dO49lKD4KxYJk4a5MkjslPookAfHfW9HVd1bnfEpdGyiNgbis1k9ViQBcGsQTVSARanYcTtU8-gDeRUa00Z6pwjCDtpZfLtTlOL4CkLOeC3VbPdeomzRKt9jLQaa-XXylSYaPNLz1h_2VOs_pfZT5_85UfX9Xrx71ZvuwXlUb3UeYNBnLEhy3SRJ78dl2LWVOqfm9c-RkyOTcQMg2E1NEDIasxy5LB9HRTN38aXsR2X0O_TH_vTMWib2jHxHiPd0</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ying-Lan Chang</creator><creator>Koun-Tem Sun</creator><creator>Yueh-Hong Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>ART2-based genetic watermarking</title><author>Ying-Lan Chang ; Koun-Tem Sun ; Yueh-Hong Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3145e865caea57e7f4dc3f5aab5658dc3a131ffb08f4f353922813472dfed0963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer science</topic><topic>Constraint optimization</topic><topic>Discrete cosine transforms</topic><topic>Genetic algorithms</topic><topic>Internet</topic><topic>Neural networks</topic><topic>Optimized production technology</topic><topic>Robustness</topic><topic>Sun</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Lan Chang</creatorcontrib><creatorcontrib>Koun-Tem Sun</creatorcontrib><creatorcontrib>Yueh-Hong Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Lan Chang</au><au>Koun-Tem Sun</au><au>Yueh-Hong Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ART2-based genetic watermarking</atitle><btitle>19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers)</btitle><stitle>AINA</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>729</spage><epage>734 vol.1</epage><pages>729-734 vol.1</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><isbn>9780769522494</isbn><isbn>0769522491</isbn><abstract>A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2005.122</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-445X |
ispartof | 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers), 2005, Vol.1, p.729-734 vol.1 |
issn | 1550-445X 2332-5658 |
language | eng |
recordid | cdi_ieee_primary_1423576 |
source | IEEE Xplore All Conference Series |
subjects | Computer science Constraint optimization Discrete cosine transforms Genetic algorithms Internet Neural networks Optimized production technology Robustness Sun Watermarking |
title | ART2-based genetic watermarking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ART2-based%20genetic%20watermarking&rft.btitle=19th%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(AINA'05)%20Volume%201%20(AINA%20papers)&rft.au=Ying-Lan%20Chang&rft.date=2005&rft.volume=1&rft.spage=729&rft.epage=734%20vol.1&rft.pages=729-734%20vol.1&rft.issn=1550-445X&rft.eissn=2332-5658&rft.isbn=9780769522494&rft.isbn_list=0769522491&rft_id=info:doi/10.1109/AINA.2005.122&rft_dat=%3Cieee_CHZPO%3E1423576%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3145e865caea57e7f4dc3f5aab5658dc3a131ffb08f4f353922813472dfed0963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1423576&rfr_iscdi=true |