Loading…

ART2-based genetic watermarking

A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for waterm...

Full description

Saved in:
Bibliographic Details
Main Authors: Ying-Lan Chang, Koun-Tem Sun, Yueh-Hong Chen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 734 vol.1
container_issue
container_start_page 729
container_title
container_volume 1
creator Ying-Lan Chang
Koun-Tem Sun
Yueh-Hong Chen
description A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.
doi_str_mv 10.1109/AINA.2005.122
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1423576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1423576</ieee_id><sourcerecordid>1423576</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-3145e865caea57e7f4dc3f5aab5658dc3a131ffb08f4f353922813472dfed0963</originalsourceid><addsrcrecordid>eNotjktLw0AURgcfYKxdunJh_8Ckd-6dO49lKD4KxYJk4a5MkjslPookAfHfW9HVd1bnfEpdGyiNgbis1k9ViQBcGsQTVSARanYcTtU8-gDeRUa00Z6pwjCDtpZfLtTlOL4CkLOeC3VbPdeomzRKt9jLQaa-XXylSYaPNLz1h_2VOs_pfZT5_85UfX9Xrx71ZvuwXlUb3UeYNBnLEhy3SRJ78dl2LWVOqfm9c-RkyOTcQMg2E1NEDIasxy5LB9HRTN38aXsR2X0O_TH_vTMWib2jHxHiPd0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ART2-based genetic watermarking</title><source>IEEE Xplore All Conference Series</source><creator>Ying-Lan Chang ; Koun-Tem Sun ; Yueh-Hong Chen</creator><creatorcontrib>Ying-Lan Chang ; Koun-Tem Sun ; Yueh-Hong Chen</creatorcontrib><description>A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.</description><identifier>ISSN: 1550-445X</identifier><identifier>ISBN: 9780769522494</identifier><identifier>ISBN: 0769522491</identifier><identifier>EISSN: 2332-5658</identifier><identifier>DOI: 10.1109/AINA.2005.122</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Constraint optimization ; Discrete cosine transforms ; Genetic algorithms ; Internet ; Neural networks ; Optimized production technology ; Robustness ; Sun ; Watermarking</subject><ispartof>19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers), 2005, Vol.1, p.729-734 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1423576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1423576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying-Lan Chang</creatorcontrib><creatorcontrib>Koun-Tem Sun</creatorcontrib><creatorcontrib>Yueh-Hong Chen</creatorcontrib><title>ART2-based genetic watermarking</title><title>19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers)</title><addtitle>AINA</addtitle><description>A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.</description><subject>Computer science</subject><subject>Constraint optimization</subject><subject>Discrete cosine transforms</subject><subject>Genetic algorithms</subject><subject>Internet</subject><subject>Neural networks</subject><subject>Optimized production technology</subject><subject>Robustness</subject><subject>Sun</subject><subject>Watermarking</subject><issn>1550-445X</issn><issn>2332-5658</issn><isbn>9780769522494</isbn><isbn>0769522491</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjktLw0AURgcfYKxdunJh_8Ckd-6dO49lKD4KxYJk4a5MkjslPookAfHfW9HVd1bnfEpdGyiNgbis1k9ViQBcGsQTVSARanYcTtU8-gDeRUa00Z6pwjCDtpZfLtTlOL4CkLOeC3VbPdeomzRKt9jLQaa-XXylSYaPNLz1h_2VOs_pfZT5_85UfX9Xrx71ZvuwXlUb3UeYNBnLEhy3SRJ78dl2LWVOqfm9c-RkyOTcQMg2E1NEDIasxy5LB9HRTN38aXsR2X0O_TH_vTMWib2jHxHiPd0</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ying-Lan Chang</creator><creator>Koun-Tem Sun</creator><creator>Yueh-Hong Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>ART2-based genetic watermarking</title><author>Ying-Lan Chang ; Koun-Tem Sun ; Yueh-Hong Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-3145e865caea57e7f4dc3f5aab5658dc3a131ffb08f4f353922813472dfed0963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer science</topic><topic>Constraint optimization</topic><topic>Discrete cosine transforms</topic><topic>Genetic algorithms</topic><topic>Internet</topic><topic>Neural networks</topic><topic>Optimized production technology</topic><topic>Robustness</topic><topic>Sun</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying-Lan Chang</creatorcontrib><creatorcontrib>Koun-Tem Sun</creatorcontrib><creatorcontrib>Yueh-Hong Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying-Lan Chang</au><au>Koun-Tem Sun</au><au>Yueh-Hong Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ART2-based genetic watermarking</atitle><btitle>19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers)</btitle><stitle>AINA</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>729</spage><epage>734 vol.1</epage><pages>729-734 vol.1</pages><issn>1550-445X</issn><eissn>2332-5658</eissn><isbn>9780769522494</isbn><isbn>0769522491</isbn><abstract>A genetic watermarking approach based on ART2 neural network is proposed in the paper. This approach uses an ART2 neural network to classify 8/spl times/8 DCT blocks of images in training sets. For each cluster, genetic algorithm (GA) is then performed to find out the optimal coefficients for watermark embedding. All the results are recorded in a table, called optimal position table (OPT). According to the OPT table, the coefficients for watermark embedding can be decided straightforward. Two features of the proposed approach make itself a suitable enhancement for genetic watermarking. First, it has the ability to keep and refine the results obtained from genetic watermarking. Second, the proposed method greatly increases the speed of genetic watermarking so that genetic watermarking can be used in practice. The experimental results shows that the watermarked images are perceptually equal to the originals, and that the watermarks are still detectable after low pass filtering, high pass filtering and JPEG compression.</abstract><pub>IEEE</pub><doi>10.1109/AINA.2005.122</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-445X
ispartof 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers), 2005, Vol.1, p.729-734 vol.1
issn 1550-445X
2332-5658
language eng
recordid cdi_ieee_primary_1423576
source IEEE Xplore All Conference Series
subjects Computer science
Constraint optimization
Discrete cosine transforms
Genetic algorithms
Internet
Neural networks
Optimized production technology
Robustness
Sun
Watermarking
title ART2-based genetic watermarking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ART2-based%20genetic%20watermarking&rft.btitle=19th%20International%20Conference%20on%20Advanced%20Information%20Networking%20and%20Applications%20(AINA'05)%20Volume%201%20(AINA%20papers)&rft.au=Ying-Lan%20Chang&rft.date=2005&rft.volume=1&rft.spage=729&rft.epage=734%20vol.1&rft.pages=729-734%20vol.1&rft.issn=1550-445X&rft.eissn=2332-5658&rft.isbn=9780769522494&rft.isbn_list=0769522491&rft_id=info:doi/10.1109/AINA.2005.122&rft_dat=%3Cieee_CHZPO%3E1423576%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-3145e865caea57e7f4dc3f5aab5658dc3a131ffb08f4f353922813472dfed0963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1423576&rfr_iscdi=true