Loading…

FDTD simulation of TE and TM plane waves at nonzero incidence in arbitrary Layered media

Plane wave scattering is an important class of electromagnetic problems that is surprisingly difficult to model with the two-dimensional finite-difference time-domain (FDTD) method if the direction of propagation is not parallel to one of the grid axes. In particular, infinite plane wave interaction...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2005-05, Vol.53 (5), p.1721-1728
Main Authors: Winton, S.C., Kosmas, P., Rappaport, C.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plane wave scattering is an important class of electromagnetic problems that is surprisingly difficult to model with the two-dimensional finite-difference time-domain (FDTD) method if the direction of propagation is not parallel to one of the grid axes. In particular, infinite plane wave interaction with dispersive half-spaces or layers must include careful modeling of the incident field. By using the plane wave solutions of Maxwell's equations to eliminate the transverse field dependence, a modified set of curl equations is derived which can model a "slice" of an oblique plane wave along grid axes. The resulting equations may be used as edge conditions on an FDTD grid. These edge conditions represent the only known way to accurately propagate plane wave pulses into a frequency dependent medium. An examination of grid dispersion between the plane wave and the modeled slice reveals good agreement. Application to arbitrary dispersive media is straightforward for the transverse magnetic (TM) case, but requires the use of an auxiliary equation for the transverse electric case, which increases complexity. In the latter case, a simplified approach, based on formulating the dual of the TM equations, is shown to be quite effective. The strength of the developed approach is illustrated with a comparison with the conventional simulation based on an analytic incident wave specification with half-space, single frequency reflection and transmission for the edges. Finally, an example of a possible biomedical application is given and the implementation of the method in the perfectly matched layer region is discussed.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2005.846719