Loading…
On the relation between dependence and diversity in multiple classifier systems
In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. D...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 139 Vol. 1 |
container_issue | |
container_start_page | 134 |
container_title | |
container_volume | 1 |
creator | Dechang Chen Sirlantzis, K. Dong Hua Xiaobin Ma |
description | In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers. |
doi_str_mv | 10.1109/ITCC.2005.214 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1428450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1428450</ieee_id><sourcerecordid>1428450</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-55b958539014402aee3dd2e403212a835eb1d0008534a1e5f85f0b8506535b1c3</originalsourceid><addsrcrecordid>eNotjs1KxDAURgMiqOMsXbnJC7Tem-R2mqUUfwYGuhnXQ9rcYqSNpYnKvL0F_TZnczh8QtwhlIhgH_bHpikVAJUKzYW4gV1lSWkkfSW2KX3AOm2NreBatG2U-Z3lwqPL4TPKjvMPc5SeZ46eY8_SRS99-OYlhXyWIcrpa8xhHln2o0spDIEXmc4p85RuxeXgxsTbf27E2_PTsXktDu3Lvnk8FAF3lAuizlJN2gIaA8oxa-8VG9AKlas1cYd-vbkqxiHTUNMAXU1QkaYOe70R93_dwMyneQmTW84nNKo2BPoXF35Lng</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the relation between dependence and diversity in multiple classifier systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dechang Chen ; Sirlantzis, K. ; Dong Hua ; Xiaobin Ma</creator><creatorcontrib>Dechang Chen ; Sirlantzis, K. ; Dong Hua ; Xiaobin Ma</creatorcontrib><description>In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.</description><identifier>ISBN: 0769523153</identifier><identifier>ISBN: 9780769523156</identifier><identifier>DOI: 10.1109/ITCC.2005.214</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Computer science ; Diversity reception ; Information technology ; Pattern recognition ; Statistical analysis ; Statistics ; Testing ; Voting</subject><ispartof>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II, 2005, Vol.1, p.134-139 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1428450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1428450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dechang Chen</creatorcontrib><creatorcontrib>Sirlantzis, K.</creatorcontrib><creatorcontrib>Dong Hua</creatorcontrib><creatorcontrib>Xiaobin Ma</creatorcontrib><title>On the relation between dependence and diversity in multiple classifier systems</title><title>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II</title><addtitle>ITCC</addtitle><description>In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.</description><subject>Biometrics</subject><subject>Computer science</subject><subject>Diversity reception</subject><subject>Information technology</subject><subject>Pattern recognition</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Testing</subject><subject>Voting</subject><isbn>0769523153</isbn><isbn>9780769523156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KxDAURgMiqOMsXbnJC7Tem-R2mqUUfwYGuhnXQ9rcYqSNpYnKvL0F_TZnczh8QtwhlIhgH_bHpikVAJUKzYW4gV1lSWkkfSW2KX3AOm2NreBatG2U-Z3lwqPL4TPKjvMPc5SeZ46eY8_SRS99-OYlhXyWIcrpa8xhHln2o0spDIEXmc4p85RuxeXgxsTbf27E2_PTsXktDu3Lvnk8FAF3lAuizlJN2gIaA8oxa-8VG9AKlas1cYd-vbkqxiHTUNMAXU1QkaYOe70R93_dwMyneQmTW84nNKo2BPoXF35Lng</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dechang Chen</creator><creator>Sirlantzis, K.</creator><creator>Dong Hua</creator><creator>Xiaobin Ma</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>On the relation between dependence and diversity in multiple classifier systems</title><author>Dechang Chen ; Sirlantzis, K. ; Dong Hua ; Xiaobin Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-55b958539014402aee3dd2e403212a835eb1d0008534a1e5f85f0b8506535b1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biometrics</topic><topic>Computer science</topic><topic>Diversity reception</topic><topic>Information technology</topic><topic>Pattern recognition</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Testing</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Dechang Chen</creatorcontrib><creatorcontrib>Sirlantzis, K.</creatorcontrib><creatorcontrib>Dong Hua</creatorcontrib><creatorcontrib>Xiaobin Ma</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dechang Chen</au><au>Sirlantzis, K.</au><au>Dong Hua</au><au>Xiaobin Ma</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the relation between dependence and diversity in multiple classifier systems</atitle><btitle>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II</btitle><stitle>ITCC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>134</spage><epage>139 Vol. 1</epage><pages>134-139 Vol. 1</pages><isbn>0769523153</isbn><isbn>9780769523156</isbn><abstract>In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.</abstract><pub>IEEE</pub><doi>10.1109/ITCC.2005.214</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769523153 |
ispartof | International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II, 2005, Vol.1, p.134-139 Vol. 1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1428450 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biometrics Computer science Diversity reception Information technology Pattern recognition Statistical analysis Statistics Testing Voting |
title | On the relation between dependence and diversity in multiple classifier systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20relation%20between%20dependence%20and%20diversity%20in%20multiple%20classifier%20systems&rft.btitle=International%20Conference%20on%20Information%20Technology:%20Coding%20and%20Computing%20(ITCC'05)%20-%20Volume%20II&rft.au=Dechang%20Chen&rft.date=2005&rft.volume=1&rft.spage=134&rft.epage=139%20Vol.%201&rft.pages=134-139%20Vol.%201&rft.isbn=0769523153&rft.isbn_list=9780769523156&rft_id=info:doi/10.1109/ITCC.2005.214&rft_dat=%3Cieee_6IE%3E1428450%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-55b958539014402aee3dd2e403212a835eb1d0008534a1e5f85f0b8506535b1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1428450&rfr_iscdi=true |