Loading…

On the relation between dependence and diversity in multiple classifier systems

In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. D...

Full description

Saved in:
Bibliographic Details
Main Authors: Dechang Chen, Sirlantzis, K., Dong Hua, Xiaobin Ma
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 139 Vol. 1
container_issue
container_start_page 134
container_title
container_volume 1
creator Dechang Chen
Sirlantzis, K.
Dong Hua
Xiaobin Ma
description In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.
doi_str_mv 10.1109/ITCC.2005.214
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1428450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1428450</ieee_id><sourcerecordid>1428450</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-55b958539014402aee3dd2e403212a835eb1d0008534a1e5f85f0b8506535b1c3</originalsourceid><addsrcrecordid>eNotjs1KxDAURgMiqOMsXbnJC7Tem-R2mqUUfwYGuhnXQ9rcYqSNpYnKvL0F_TZnczh8QtwhlIhgH_bHpikVAJUKzYW4gV1lSWkkfSW2KX3AOm2NreBatG2U-Z3lwqPL4TPKjvMPc5SeZ46eY8_SRS99-OYlhXyWIcrpa8xhHln2o0spDIEXmc4p85RuxeXgxsTbf27E2_PTsXktDu3Lvnk8FAF3lAuizlJN2gIaA8oxa-8VG9AKlas1cYd-vbkqxiHTUNMAXU1QkaYOe70R93_dwMyneQmTW84nNKo2BPoXF35Lng</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the relation between dependence and diversity in multiple classifier systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dechang Chen ; Sirlantzis, K. ; Dong Hua ; Xiaobin Ma</creator><creatorcontrib>Dechang Chen ; Sirlantzis, K. ; Dong Hua ; Xiaobin Ma</creatorcontrib><description>In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.</description><identifier>ISBN: 0769523153</identifier><identifier>ISBN: 9780769523156</identifier><identifier>DOI: 10.1109/ITCC.2005.214</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Computer science ; Diversity reception ; Information technology ; Pattern recognition ; Statistical analysis ; Statistics ; Testing ; Voting</subject><ispartof>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II, 2005, Vol.1, p.134-139 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1428450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1428450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dechang Chen</creatorcontrib><creatorcontrib>Sirlantzis, K.</creatorcontrib><creatorcontrib>Dong Hua</creatorcontrib><creatorcontrib>Xiaobin Ma</creatorcontrib><title>On the relation between dependence and diversity in multiple classifier systems</title><title>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II</title><addtitle>ITCC</addtitle><description>In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.</description><subject>Biometrics</subject><subject>Computer science</subject><subject>Diversity reception</subject><subject>Information technology</subject><subject>Pattern recognition</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Testing</subject><subject>Voting</subject><isbn>0769523153</isbn><isbn>9780769523156</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KxDAURgMiqOMsXbnJC7Tem-R2mqUUfwYGuhnXQ9rcYqSNpYnKvL0F_TZnczh8QtwhlIhgH_bHpikVAJUKzYW4gV1lSWkkfSW2KX3AOm2NreBatG2U-Z3lwqPL4TPKjvMPc5SeZ46eY8_SRS99-OYlhXyWIcrpa8xhHln2o0spDIEXmc4p85RuxeXgxsTbf27E2_PTsXktDu3Lvnk8FAF3lAuizlJN2gIaA8oxa-8VG9AKlas1cYd-vbkqxiHTUNMAXU1QkaYOe70R93_dwMyneQmTW84nNKo2BPoXF35Lng</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dechang Chen</creator><creator>Sirlantzis, K.</creator><creator>Dong Hua</creator><creator>Xiaobin Ma</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>On the relation between dependence and diversity in multiple classifier systems</title><author>Dechang Chen ; Sirlantzis, K. ; Dong Hua ; Xiaobin Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-55b958539014402aee3dd2e403212a835eb1d0008534a1e5f85f0b8506535b1c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biometrics</topic><topic>Computer science</topic><topic>Diversity reception</topic><topic>Information technology</topic><topic>Pattern recognition</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Testing</topic><topic>Voting</topic><toplevel>online_resources</toplevel><creatorcontrib>Dechang Chen</creatorcontrib><creatorcontrib>Sirlantzis, K.</creatorcontrib><creatorcontrib>Dong Hua</creatorcontrib><creatorcontrib>Xiaobin Ma</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dechang Chen</au><au>Sirlantzis, K.</au><au>Dong Hua</au><au>Xiaobin Ma</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the relation between dependence and diversity in multiple classifier systems</atitle><btitle>International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II</btitle><stitle>ITCC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>134</spage><epage>139 Vol. 1</epage><pages>134-139 Vol. 1</pages><isbn>0769523153</isbn><isbn>9780769523156</isbn><abstract>In this paper we investigate the issues of independence and diversity among individual classifiers participating in a multiple classifier fusion scheme. First we present a formal definition of statistically independent classifiers. Then we focus on testing the independence between two classifiers. Dependence of two classifiers leads to the conclusion that every ensemble of classifiers in which they participate is not an independent scheme. Previous studies have argued that independence of the classifiers infuses diversity in the multi-classifier system, which is directly related to improved performance. Consequently, we introduce a measure for the degree of diversity as expressed by the agreement among the classifiers' outputs in such an ensemble. A number of examples drawn from diverse domains in pattern recognition are also given to illustrate the relation between classifier dependence and diversity estimation. Our results suggest the measurement of the classifiers' decisions agreement as an informative measure of the strength of association among dependent classifiers.</abstract><pub>IEEE</pub><doi>10.1109/ITCC.2005.214</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769523153
ispartof International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II, 2005, Vol.1, p.134-139 Vol. 1
issn
language eng
recordid cdi_ieee_primary_1428450
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biometrics
Computer science
Diversity reception
Information technology
Pattern recognition
Statistical analysis
Statistics
Testing
Voting
title On the relation between dependence and diversity in multiple classifier systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20relation%20between%20dependence%20and%20diversity%20in%20multiple%20classifier%20systems&rft.btitle=International%20Conference%20on%20Information%20Technology:%20Coding%20and%20Computing%20(ITCC'05)%20-%20Volume%20II&rft.au=Dechang%20Chen&rft.date=2005&rft.volume=1&rft.spage=134&rft.epage=139%20Vol.%201&rft.pages=134-139%20Vol.%201&rft.isbn=0769523153&rft.isbn_list=9780769523156&rft_id=info:doi/10.1109/ITCC.2005.214&rft_dat=%3Cieee_6IE%3E1428450%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-55b958539014402aee3dd2e403212a835eb1d0008534a1e5f85f0b8506535b1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1428450&rfr_iscdi=true