Loading…

Sampling rate of digital fault recorders influence on fault diagnosis

A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling...

Full description

Saved in:
Bibliographic Details
Main Authors: Neves, W.L.A., Brito, N.S.D., Souza, B.A., Fontes, A.V., Dantas, K.M.C., Fernandes, A.B., Silva, S.S.B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 411
container_issue
container_start_page 406
container_title
container_volume
creator Neves, W.L.A.
Brito, N.S.D.
Souza, B.A.
Fontes, A.V.
Dantas, K.M.C.
Fernandes, A.B.
Silva, S.S.B.
description A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.
doi_str_mv 10.1109/TDC.2004.1432414
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1432414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1432414</ieee_id><sourcerecordid>1432414</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7e63d19980386b24fa9ea914dc81decbee7635fc04869d66e54e025a0d5545613</originalsourceid><addsrcrecordid>eNotT01LxDAUDIigrL0LXvIHWt9rvpqj1PUDFjy4npds81Ii3XZJugf_vRU7DMxhhmGGsXuEChHs4_65rWoAWaEUtUR5xQprGlgoGmMU3rAi529YIKw2ALds--lO5yGOPU9uJj4F7mMfZzfw4C7DzBN1U_KUMo9jGC40dktoXE0fXT9OOeY7dh3ckKlYdcO-Xrb79q3cfby-t0-7MqJRc2lIC4_W_s3Rx1oGZ8lZlL5r0FN3JDJaqNCBbLT1WpOSBLVy4JWSSqPYsIf_3khEh3OKJ5d-DutZ8QvvZUmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sampling rate of digital fault recorders influence on fault diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neves, W.L.A. ; Brito, N.S.D. ; Souza, B.A. ; Fontes, A.V. ; Dantas, K.M.C. ; Fernandes, A.B. ; Silva, S.S.B.</creator><creatorcontrib>Neves, W.L.A. ; Brito, N.S.D. ; Souza, B.A. ; Fontes, A.V. ; Dantas, K.M.C. ; Fernandes, A.B. ; Silva, S.S.B.</creatorcontrib><description>A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.</description><identifier>ISBN: 9780780387751</identifier><identifier>ISBN: 0780387759</identifier><identifier>DOI: 10.1109/TDC.2004.1432414</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data engineering ; Fault diagnosis ; Frequency ; Power transmission lines ; Protection ; Research and development ; Sampling methods ; Substations ; Voltage</subject><ispartof>2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), 2004, p.406-411</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1432414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1432414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neves, W.L.A.</creatorcontrib><creatorcontrib>Brito, N.S.D.</creatorcontrib><creatorcontrib>Souza, B.A.</creatorcontrib><creatorcontrib>Fontes, A.V.</creatorcontrib><creatorcontrib>Dantas, K.M.C.</creatorcontrib><creatorcontrib>Fernandes, A.B.</creatorcontrib><creatorcontrib>Silva, S.S.B.</creatorcontrib><title>Sampling rate of digital fault recorders influence on fault diagnosis</title><title>2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956)</title><addtitle>TDC</addtitle><description>A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.</description><subject>Artificial neural networks</subject><subject>Data engineering</subject><subject>Fault diagnosis</subject><subject>Frequency</subject><subject>Power transmission lines</subject><subject>Protection</subject><subject>Research and development</subject><subject>Sampling methods</subject><subject>Substations</subject><subject>Voltage</subject><isbn>9780780387751</isbn><isbn>0780387759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT01LxDAUDIigrL0LXvIHWt9rvpqj1PUDFjy4npds81Ii3XZJugf_vRU7DMxhhmGGsXuEChHs4_65rWoAWaEUtUR5xQprGlgoGmMU3rAi529YIKw2ALds--lO5yGOPU9uJj4F7mMfZzfw4C7DzBN1U_KUMo9jGC40dktoXE0fXT9OOeY7dh3ckKlYdcO-Xrb79q3cfby-t0-7MqJRc2lIC4_W_s3Rx1oGZ8lZlL5r0FN3JDJaqNCBbLT1WpOSBLVy4JWSSqPYsIf_3khEh3OKJ5d-DutZ8QvvZUmg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Neves, W.L.A.</creator><creator>Brito, N.S.D.</creator><creator>Souza, B.A.</creator><creator>Fontes, A.V.</creator><creator>Dantas, K.M.C.</creator><creator>Fernandes, A.B.</creator><creator>Silva, S.S.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Sampling rate of digital fault recorders influence on fault diagnosis</title><author>Neves, W.L.A. ; Brito, N.S.D. ; Souza, B.A. ; Fontes, A.V. ; Dantas, K.M.C. ; Fernandes, A.B. ; Silva, S.S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7e63d19980386b24fa9ea914dc81decbee7635fc04869d66e54e025a0d5545613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural networks</topic><topic>Data engineering</topic><topic>Fault diagnosis</topic><topic>Frequency</topic><topic>Power transmission lines</topic><topic>Protection</topic><topic>Research and development</topic><topic>Sampling methods</topic><topic>Substations</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Neves, W.L.A.</creatorcontrib><creatorcontrib>Brito, N.S.D.</creatorcontrib><creatorcontrib>Souza, B.A.</creatorcontrib><creatorcontrib>Fontes, A.V.</creatorcontrib><creatorcontrib>Dantas, K.M.C.</creatorcontrib><creatorcontrib>Fernandes, A.B.</creatorcontrib><creatorcontrib>Silva, S.S.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neves, W.L.A.</au><au>Brito, N.S.D.</au><au>Souza, B.A.</au><au>Fontes, A.V.</au><au>Dantas, K.M.C.</au><au>Fernandes, A.B.</au><au>Silva, S.S.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sampling rate of digital fault recorders influence on fault diagnosis</atitle><btitle>2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956)</btitle><stitle>TDC</stitle><date>2004</date><risdate>2004</risdate><spage>406</spage><epage>411</epage><pages>406-411</pages><isbn>9780780387751</isbn><isbn>0780387759</isbn><abstract>A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.</abstract><pub>IEEE</pub><doi>10.1109/TDC.2004.1432414</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780387751
ispartof 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), 2004, p.406-411
issn
language eng
recordid cdi_ieee_primary_1432414
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Data engineering
Fault diagnosis
Frequency
Power transmission lines
Protection
Research and development
Sampling methods
Substations
Voltage
title Sampling rate of digital fault recorders influence on fault diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sampling%20rate%20of%20digital%20fault%20recorders%20influence%20on%20fault%20diagnosis&rft.btitle=2004%20IEEE/PES%20Transmision%20and%20Distribution%20Conference%20and%20Exposition:%20Latin%20America%20(IEEE%20Cat.%20No.%2004EX956)&rft.au=Neves,%20W.L.A.&rft.date=2004&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.isbn=9780780387751&rft.isbn_list=0780387759&rft_id=info:doi/10.1109/TDC.2004.1432414&rft_dat=%3Cieee_6IE%3E1432414%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7e63d19980386b24fa9ea914dc81decbee7635fc04869d66e54e025a0d5545613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1432414&rfr_iscdi=true