Loading…
Sampling rate of digital fault recorders influence on fault diagnosis
A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 411 |
container_issue | |
container_start_page | 406 |
container_title | |
container_volume | |
creator | Neves, W.L.A. Brito, N.S.D. Souza, B.A. Fontes, A.V. Dantas, K.M.C. Fernandes, A.B. Silva, S.S.B. |
description | A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented. |
doi_str_mv | 10.1109/TDC.2004.1432414 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1432414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1432414</ieee_id><sourcerecordid>1432414</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7e63d19980386b24fa9ea914dc81decbee7635fc04869d66e54e025a0d5545613</originalsourceid><addsrcrecordid>eNotT01LxDAUDIigrL0LXvIHWt9rvpqj1PUDFjy4npds81Ii3XZJugf_vRU7DMxhhmGGsXuEChHs4_65rWoAWaEUtUR5xQprGlgoGmMU3rAi529YIKw2ALds--lO5yGOPU9uJj4F7mMfZzfw4C7DzBN1U_KUMo9jGC40dktoXE0fXT9OOeY7dh3ckKlYdcO-Xrb79q3cfby-t0-7MqJRc2lIC4_W_s3Rx1oGZ8lZlL5r0FN3JDJaqNCBbLT1WpOSBLVy4JWSSqPYsIf_3khEh3OKJ5d-DutZ8QvvZUmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sampling rate of digital fault recorders influence on fault diagnosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Neves, W.L.A. ; Brito, N.S.D. ; Souza, B.A. ; Fontes, A.V. ; Dantas, K.M.C. ; Fernandes, A.B. ; Silva, S.S.B.</creator><creatorcontrib>Neves, W.L.A. ; Brito, N.S.D. ; Souza, B.A. ; Fontes, A.V. ; Dantas, K.M.C. ; Fernandes, A.B. ; Silva, S.S.B.</creatorcontrib><description>A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.</description><identifier>ISBN: 9780780387751</identifier><identifier>ISBN: 0780387759</identifier><identifier>DOI: 10.1109/TDC.2004.1432414</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Data engineering ; Fault diagnosis ; Frequency ; Power transmission lines ; Protection ; Research and development ; Sampling methods ; Substations ; Voltage</subject><ispartof>2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), 2004, p.406-411</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1432414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1432414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Neves, W.L.A.</creatorcontrib><creatorcontrib>Brito, N.S.D.</creatorcontrib><creatorcontrib>Souza, B.A.</creatorcontrib><creatorcontrib>Fontes, A.V.</creatorcontrib><creatorcontrib>Dantas, K.M.C.</creatorcontrib><creatorcontrib>Fernandes, A.B.</creatorcontrib><creatorcontrib>Silva, S.S.B.</creatorcontrib><title>Sampling rate of digital fault recorders influence on fault diagnosis</title><title>2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956)</title><addtitle>TDC</addtitle><description>A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.</description><subject>Artificial neural networks</subject><subject>Data engineering</subject><subject>Fault diagnosis</subject><subject>Frequency</subject><subject>Power transmission lines</subject><subject>Protection</subject><subject>Research and development</subject><subject>Sampling methods</subject><subject>Substations</subject><subject>Voltage</subject><isbn>9780780387751</isbn><isbn>0780387759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT01LxDAUDIigrL0LXvIHWt9rvpqj1PUDFjy4npds81Ii3XZJugf_vRU7DMxhhmGGsXuEChHs4_65rWoAWaEUtUR5xQprGlgoGmMU3rAi529YIKw2ALds--lO5yGOPU9uJj4F7mMfZzfw4C7DzBN1U_KUMo9jGC40dktoXE0fXT9OOeY7dh3ckKlYdcO-Xrb79q3cfby-t0-7MqJRc2lIC4_W_s3Rx1oGZ8lZlL5r0FN3JDJaqNCBbLT1WpOSBLVy4JWSSqPYsIf_3khEh3OKJ5d-DutZ8QvvZUmg</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Neves, W.L.A.</creator><creator>Brito, N.S.D.</creator><creator>Souza, B.A.</creator><creator>Fontes, A.V.</creator><creator>Dantas, K.M.C.</creator><creator>Fernandes, A.B.</creator><creator>Silva, S.S.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Sampling rate of digital fault recorders influence on fault diagnosis</title><author>Neves, W.L.A. ; Brito, N.S.D. ; Souza, B.A. ; Fontes, A.V. ; Dantas, K.M.C. ; Fernandes, A.B. ; Silva, S.S.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7e63d19980386b24fa9ea914dc81decbee7635fc04869d66e54e025a0d5545613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural networks</topic><topic>Data engineering</topic><topic>Fault diagnosis</topic><topic>Frequency</topic><topic>Power transmission lines</topic><topic>Protection</topic><topic>Research and development</topic><topic>Sampling methods</topic><topic>Substations</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Neves, W.L.A.</creatorcontrib><creatorcontrib>Brito, N.S.D.</creatorcontrib><creatorcontrib>Souza, B.A.</creatorcontrib><creatorcontrib>Fontes, A.V.</creatorcontrib><creatorcontrib>Dantas, K.M.C.</creatorcontrib><creatorcontrib>Fernandes, A.B.</creatorcontrib><creatorcontrib>Silva, S.S.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Neves, W.L.A.</au><au>Brito, N.S.D.</au><au>Souza, B.A.</au><au>Fontes, A.V.</au><au>Dantas, K.M.C.</au><au>Fernandes, A.B.</au><au>Silva, S.S.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sampling rate of digital fault recorders influence on fault diagnosis</atitle><btitle>2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956)</btitle><stitle>TDC</stitle><date>2004</date><risdate>2004</risdate><spage>406</spage><epage>411</epage><pages>406-411</pages><isbn>9780780387751</isbn><isbn>0780387759</isbn><abstract>A case study of fault classification in transmission lines using artificial neural networks (ANN) is presented. The database is built from current and voltage waveform samples obtained from fault simulations with the ATP. Utility companies usually have digital fault recorders with different sampling rates, so it is important to evaluate how good the classifier is when the sampling rate changes, this is the main purpose of the paper. A routine to reduce the sampling rate with no loss of accuracy in classifying faults was implemented.</abstract><pub>IEEE</pub><doi>10.1109/TDC.2004.1432414</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780387751 |
ispartof | 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), 2004, p.406-411 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1432414 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Data engineering Fault diagnosis Frequency Power transmission lines Protection Research and development Sampling methods Substations Voltage |
title | Sampling rate of digital fault recorders influence on fault diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sampling%20rate%20of%20digital%20fault%20recorders%20influence%20on%20fault%20diagnosis&rft.btitle=2004%20IEEE/PES%20Transmision%20and%20Distribution%20Conference%20and%20Exposition:%20Latin%20America%20(IEEE%20Cat.%20No.%2004EX956)&rft.au=Neves,%20W.L.A.&rft.date=2004&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.isbn=9780780387751&rft.isbn_list=0780387759&rft_id=info:doi/10.1109/TDC.2004.1432414&rft_dat=%3Cieee_6IE%3E1432414%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-7e63d19980386b24fa9ea914dc81decbee7635fc04869d66e54e025a0d5545613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1432414&rfr_iscdi=true |