Loading…

Fusion of local filters

This paper considers the problem of fusion of local filters. We derive an optimal mean square combination of arbitrary number of correlated estimates. In particular, for two sensors this combination represents the well-known Millman and Bar-Shalom-Campo formulae for uncorrelated and correlated estim...

Full description

Saved in:
Bibliographic Details
Main Authors: Choi, D., Shin, V., Byung-Ha Ahn, Jun Il Ahn
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 27
container_issue
container_start_page 22
container_title
container_volume
creator Choi, D.
Shin, V.
Byung-Ha Ahn
Jun Il Ahn
description This paper considers the problem of fusion of local filters. We derive an optimal mean square combination of arbitrary number of correlated estimates. In particular, for two sensors this combination represents the well-known Millman and Bar-Shalom-Campo formulae for uncorrelated and correlated estimation errors, respectively. The new combination is applied to an adaptive filtering problem and fusion of multisensor estimates. Two suboptimal filters with a parallel structure are herein proposed. The equation for error covariance characterizing the mean square accuracy of these filters is derived. In consequence of parallel structure of the filters, parallel computers can be used for their design. The examples demonstrate the effect of the common process noise on the fusion of the state estimates of a target based on measurements obtained by two different sensors.
doi_str_mv 10.1109/ISPACS.2004.1439008
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1439008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1439008</ieee_id><sourcerecordid>1439008</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bac47a0a1d0b05c9a01e92641fafc47dacaecdd67af6a6a403eb5bec0cf3e56a3</originalsourceid><addsrcrecordid>eNotjssKwjAURAMiKNq1Czf9gdab5tFmKcUXFBR0L7fpDUSqlUYX_r0FHQbOYuAwjC05pJyDWR3Op3V5TjMAmXIpDEAxYpHJCxgqCi2MnrAohBsMEUbJTE3ZYvsOvnvEnYvbzmIbO9--qA9zNnbYBor-nLHLdnMp90l13B3KdZV4A6-kRitzBOQN1KCsQeBkMi25QzcsDVok2zQ6R6dRowRBtarJgnWClEYxY8uf1hPR9dn7O_af6_-9-AKcrTsD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fusion of local filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Choi, D. ; Shin, V. ; Byung-Ha Ahn ; Jun Il Ahn</creator><creatorcontrib>Choi, D. ; Shin, V. ; Byung-Ha Ahn ; Jun Il Ahn</creatorcontrib><description>This paper considers the problem of fusion of local filters. We derive an optimal mean square combination of arbitrary number of correlated estimates. In particular, for two sensors this combination represents the well-known Millman and Bar-Shalom-Campo formulae for uncorrelated and correlated estimation errors, respectively. The new combination is applied to an adaptive filtering problem and fusion of multisensor estimates. Two suboptimal filters with a parallel structure are herein proposed. The equation for error covariance characterizing the mean square accuracy of these filters is derived. In consequence of parallel structure of the filters, parallel computers can be used for their design. The examples demonstrate the effect of the common process noise on the fusion of the state estimates of a target based on measurements obtained by two different sensors.</description><identifier>ISBN: 9780780386396</identifier><identifier>ISBN: 0780386396</identifier><identifier>DOI: 10.1109/ISPACS.2004.1439008</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Data processing ; Equations ; Estimation error ; Filtering ; Mechatronics ; Sensor fusion ; Sensor phenomena and characterization ; Signal processing algorithms ; Target tracking</subject><ispartof>Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004, 2004, p.22-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1439008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1439008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choi, D.</creatorcontrib><creatorcontrib>Shin, V.</creatorcontrib><creatorcontrib>Byung-Ha Ahn</creatorcontrib><creatorcontrib>Jun Il Ahn</creatorcontrib><title>Fusion of local filters</title><title>Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004</title><addtitle>ISPACS</addtitle><description>This paper considers the problem of fusion of local filters. We derive an optimal mean square combination of arbitrary number of correlated estimates. In particular, for two sensors this combination represents the well-known Millman and Bar-Shalom-Campo formulae for uncorrelated and correlated estimation errors, respectively. The new combination is applied to an adaptive filtering problem and fusion of multisensor estimates. Two suboptimal filters with a parallel structure are herein proposed. The equation for error covariance characterizing the mean square accuracy of these filters is derived. In consequence of parallel structure of the filters, parallel computers can be used for their design. The examples demonstrate the effect of the common process noise on the fusion of the state estimates of a target based on measurements obtained by two different sensors.</description><subject>Adaptive filters</subject><subject>Data processing</subject><subject>Equations</subject><subject>Estimation error</subject><subject>Filtering</subject><subject>Mechatronics</subject><subject>Sensor fusion</subject><subject>Sensor phenomena and characterization</subject><subject>Signal processing algorithms</subject><subject>Target tracking</subject><isbn>9780780386396</isbn><isbn>0780386396</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjssKwjAURAMiKNq1Czf9gdab5tFmKcUXFBR0L7fpDUSqlUYX_r0FHQbOYuAwjC05pJyDWR3Op3V5TjMAmXIpDEAxYpHJCxgqCi2MnrAohBsMEUbJTE3ZYvsOvnvEnYvbzmIbO9--qA9zNnbYBor-nLHLdnMp90l13B3KdZV4A6-kRitzBOQN1KCsQeBkMi25QzcsDVok2zQ6R6dRowRBtarJgnWClEYxY8uf1hPR9dn7O_af6_-9-AKcrTsD</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Choi, D.</creator><creator>Shin, V.</creator><creator>Byung-Ha Ahn</creator><creator>Jun Il Ahn</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Fusion of local filters</title><author>Choi, D. ; Shin, V. ; Byung-Ha Ahn ; Jun Il Ahn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bac47a0a1d0b05c9a01e92641fafc47dacaecdd67af6a6a403eb5bec0cf3e56a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptive filters</topic><topic>Data processing</topic><topic>Equations</topic><topic>Estimation error</topic><topic>Filtering</topic><topic>Mechatronics</topic><topic>Sensor fusion</topic><topic>Sensor phenomena and characterization</topic><topic>Signal processing algorithms</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, D.</creatorcontrib><creatorcontrib>Shin, V.</creatorcontrib><creatorcontrib>Byung-Ha Ahn</creatorcontrib><creatorcontrib>Jun Il Ahn</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choi, D.</au><au>Shin, V.</au><au>Byung-Ha Ahn</au><au>Jun Il Ahn</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fusion of local filters</atitle><btitle>Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004</btitle><stitle>ISPACS</stitle><date>2004</date><risdate>2004</risdate><spage>22</spage><epage>27</epage><pages>22-27</pages><isbn>9780780386396</isbn><isbn>0780386396</isbn><abstract>This paper considers the problem of fusion of local filters. We derive an optimal mean square combination of arbitrary number of correlated estimates. In particular, for two sensors this combination represents the well-known Millman and Bar-Shalom-Campo formulae for uncorrelated and correlated estimation errors, respectively. The new combination is applied to an adaptive filtering problem and fusion of multisensor estimates. Two suboptimal filters with a parallel structure are herein proposed. The equation for error covariance characterizing the mean square accuracy of these filters is derived. In consequence of parallel structure of the filters, parallel computers can be used for their design. The examples demonstrate the effect of the common process noise on the fusion of the state estimates of a target based on measurements obtained by two different sensors.</abstract><pub>IEEE</pub><doi>10.1109/ISPACS.2004.1439008</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780386396
ispartof Proceedings of 2004 International Symposium on Intelligent Signal Processing and Communication Systems, 2004. ISPACS 2004, 2004, p.22-27
issn
language eng
recordid cdi_ieee_primary_1439008
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
Data processing
Equations
Estimation error
Filtering
Mechatronics
Sensor fusion
Sensor phenomena and characterization
Signal processing algorithms
Target tracking
title Fusion of local filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fusion%20of%20local%20filters&rft.btitle=Proceedings%20of%202004%20International%20Symposium%20on%20Intelligent%20Signal%20Processing%20and%20Communication%20Systems,%202004.%20ISPACS%202004&rft.au=Choi,%20D.&rft.date=2004&rft.spage=22&rft.epage=27&rft.pages=22-27&rft.isbn=9780780386396&rft.isbn_list=0780386396&rft_id=info:doi/10.1109/ISPACS.2004.1439008&rft_dat=%3Cieee_6IE%3E1439008%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-bac47a0a1d0b05c9a01e92641fafc47dacaecdd67af6a6a403eb5bec0cf3e56a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1439008&rfr_iscdi=true