Loading…
Fitting algorithms for GRNNS in clustering applications
In this paper a classifier structure applying Generalized Regression Neural Networks to detect microcalifications (μCs) is proposed. It is part of a Computer Assisted Diagnosis (CAD) system designed to detect μCs in digitalized mammographics. Suspicious area of each mammography is selected and store...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper a classifier structure applying Generalized Regression Neural Networks to detect microcalifications (μCs) is proposed. It is part of a Computer Assisted Diagnosis (CAD) system designed to detect μCs in digitalized mammographics. Suspicious area of each mammography is selected and stored. A GRNN network classisfies the pixels minimimizing the mean square error (MSE). This structure was selected for its advantegeous features like highly localized pattern nodes and instanteneous learning. Three algorithims to fit the networkd parameters, given a training data set, are proposed, Some guidelines to band up the training data set have been proposed. |
---|