Loading…

Genetic algorithm optimization of peak current mode controlled buck converter

This paper presents a genetic algorithm (GA), which optimizes the parameters of an analog controller for switched mode power converter (SMPC). A peak current mode controlled buck converter is used to test the optimization algorithm. The SMPC's response to line and load step changes is simulated...

Full description

Saved in:
Bibliographic Details
Main Authors: Kostov, K.S., Kyyra, J.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 116
container_issue
container_start_page 111
container_title
container_volume
creator Kostov, K.S.
Kyyra, J.J.
description This paper presents a genetic algorithm (GA), which optimizes the parameters of an analog controller for switched mode power converter (SMPC). A peak current mode controlled buck converter is used to test the optimization algorithm. The SMPC's response to line and load step changes is simulated with every combination of controller parameters emerging in GA's population. Each controller, i.e. each chromosome in the population, is assigned a cost depending on the simulated performance of the converter. The algorithm converges successfully. Although it relies on simulations, the measurements confirm that the controllers obtained by the GA result in a SMPC with stable and fast response with minimum over- and under-shoot. This method of controller optimization requires an accurate and reliable simulation model, but the transfer functions of the converter are not needed. Therefore, it can be most useful, if converter's continuous transfer function model is unknown, or if traditional controller design techniques do not yield satisfactory results.
doi_str_mv 10.1109/SMCIA.2005.1466957
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1466957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1466957</ieee_id><sourcerecordid>1466957</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d86fee69cfb793340211fd222ac9e0532f26177724f91c49baf2a59424d84b343</originalsourceid><addsrcrecordid>eNotj99KwzAchQMiKLMvoDd5gdb8T3M5is7Bhhfq9UjTXzSubUqaCfr0VtzhwOG7OfAhdEtJRSkx9y_7ZruuGCGyokIpI_UFKoyuyVJeG8H0FSrm-ZMsEZJrqq_RfgMj5OCw7d9jCvljwHHKYQg_Noc44ujxBPaI3SklGDMeYgfYxTGn2PfQ4fbkjn_8BSlDukGX3vYzFOddobfHh9fmqdw9b7bNelcGqmUuu1p5AGWcb7XhXBBGqe8YY9YZIJIzzxTVWjPhDXXCtNYzKxcB0dWi5YKv0N3_bwCAw5TCYNP34SzNfwHMnE21</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm optimization of peak current mode controlled buck converter</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kostov, K.S. ; Kyyra, J.J.</creator><creatorcontrib>Kostov, K.S. ; Kyyra, J.J.</creatorcontrib><description>This paper presents a genetic algorithm (GA), which optimizes the parameters of an analog controller for switched mode power converter (SMPC). A peak current mode controlled buck converter is used to test the optimization algorithm. The SMPC's response to line and load step changes is simulated with every combination of controller parameters emerging in GA's population. Each controller, i.e. each chromosome in the population, is assigned a cost depending on the simulated performance of the converter. The algorithm converges successfully. Although it relies on simulations, the measurements confirm that the controllers obtained by the GA result in a SMPC with stable and fast response with minimum over- and under-shoot. This method of controller optimization requires an accurate and reliable simulation model, but the transfer functions of the converter are not needed. Therefore, it can be most useful, if converter's continuous transfer function model is unknown, or if traditional controller design techniques do not yield satisfactory results.</description><identifier>ISBN: 9780780389427</identifier><identifier>ISBN: 0780389425</identifier><identifier>DOI: 10.1109/SMCIA.2005.1466957</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buck converters ; Control systems ; Genetic algorithms ; Optimization methods ; Pulse width modulation converters ; Switched-mode power supply ; Switching converters ; Testing ; Transfer functions ; Voltage control</subject><ispartof>Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05, 2005, p.111-116</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1466957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1466957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kostov, K.S.</creatorcontrib><creatorcontrib>Kyyra, J.J.</creatorcontrib><title>Genetic algorithm optimization of peak current mode controlled buck converter</title><title>Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05</title><addtitle>SMCIA</addtitle><description>This paper presents a genetic algorithm (GA), which optimizes the parameters of an analog controller for switched mode power converter (SMPC). A peak current mode controlled buck converter is used to test the optimization algorithm. The SMPC's response to line and load step changes is simulated with every combination of controller parameters emerging in GA's population. Each controller, i.e. each chromosome in the population, is assigned a cost depending on the simulated performance of the converter. The algorithm converges successfully. Although it relies on simulations, the measurements confirm that the controllers obtained by the GA result in a SMPC with stable and fast response with minimum over- and under-shoot. This method of controller optimization requires an accurate and reliable simulation model, but the transfer functions of the converter are not needed. Therefore, it can be most useful, if converter's continuous transfer function model is unknown, or if traditional controller design techniques do not yield satisfactory results.</description><subject>Buck converters</subject><subject>Control systems</subject><subject>Genetic algorithms</subject><subject>Optimization methods</subject><subject>Pulse width modulation converters</subject><subject>Switched-mode power supply</subject><subject>Switching converters</subject><subject>Testing</subject><subject>Transfer functions</subject><subject>Voltage control</subject><isbn>9780780389427</isbn><isbn>0780389425</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj99KwzAchQMiKLMvoDd5gdb8T3M5is7Bhhfq9UjTXzSubUqaCfr0VtzhwOG7OfAhdEtJRSkx9y_7ZruuGCGyokIpI_UFKoyuyVJeG8H0FSrm-ZMsEZJrqq_RfgMj5OCw7d9jCvljwHHKYQg_Noc44ujxBPaI3SklGDMeYgfYxTGn2PfQ4fbkjn_8BSlDukGX3vYzFOddobfHh9fmqdw9b7bNelcGqmUuu1p5AGWcb7XhXBBGqe8YY9YZIJIzzxTVWjPhDXXCtNYzKxcB0dWi5YKv0N3_bwCAw5TCYNP34SzNfwHMnE21</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kostov, K.S.</creator><creator>Kyyra, J.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Genetic algorithm optimization of peak current mode controlled buck converter</title><author>Kostov, K.S. ; Kyyra, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d86fee69cfb793340211fd222ac9e0532f26177724f91c49baf2a59424d84b343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Buck converters</topic><topic>Control systems</topic><topic>Genetic algorithms</topic><topic>Optimization methods</topic><topic>Pulse width modulation converters</topic><topic>Switched-mode power supply</topic><topic>Switching converters</topic><topic>Testing</topic><topic>Transfer functions</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Kostov, K.S.</creatorcontrib><creatorcontrib>Kyyra, J.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kostov, K.S.</au><au>Kyyra, J.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm optimization of peak current mode controlled buck converter</atitle><btitle>Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05</btitle><stitle>SMCIA</stitle><date>2005</date><risdate>2005</risdate><spage>111</spage><epage>116</epage><pages>111-116</pages><isbn>9780780389427</isbn><isbn>0780389425</isbn><abstract>This paper presents a genetic algorithm (GA), which optimizes the parameters of an analog controller for switched mode power converter (SMPC). A peak current mode controlled buck converter is used to test the optimization algorithm. The SMPC's response to line and load step changes is simulated with every combination of controller parameters emerging in GA's population. Each controller, i.e. each chromosome in the population, is assigned a cost depending on the simulated performance of the converter. The algorithm converges successfully. Although it relies on simulations, the measurements confirm that the controllers obtained by the GA result in a SMPC with stable and fast response with minimum over- and under-shoot. This method of controller optimization requires an accurate and reliable simulation model, but the transfer functions of the converter are not needed. Therefore, it can be most useful, if converter's continuous transfer function model is unknown, or if traditional controller design techniques do not yield satisfactory results.</abstract><pub>IEEE</pub><doi>10.1109/SMCIA.2005.1466957</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780389427
ispartof Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05, 2005, p.111-116
issn
language eng
recordid cdi_ieee_primary_1466957
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Buck converters
Control systems
Genetic algorithms
Optimization methods
Pulse width modulation converters
Switched-mode power supply
Switching converters
Testing
Transfer functions
Voltage control
title Genetic algorithm optimization of peak current mode controlled buck converter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm%20optimization%20of%20peak%20current%20mode%20controlled%20buck%20converter&rft.btitle=Proceedings%20of%20the%202005%20IEEE%20Midnight-Summer%20Workshop%20on%20Soft%20Computing%20in%20Industrial%20Applications,%202005.%20SMCia/05&rft.au=Kostov,%20K.S.&rft.date=2005&rft.spage=111&rft.epage=116&rft.pages=111-116&rft.isbn=9780780389427&rft.isbn_list=0780389425&rft_id=info:doi/10.1109/SMCIA.2005.1466957&rft_dat=%3Cieee_6IE%3E1466957%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d86fee69cfb793340211fd222ac9e0532f26177724f91c49baf2a59424d84b343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1466957&rfr_iscdi=true