Loading…

Improved PCA based face recognition using directional filter bank

This study addresses new face recognition method based on principal component analysis (PCA) and directional filter bank (DFB) responses. Our method consists of two parts. One is the creation of directional images using DFB from the original face image. The other is transforming the directional imag...

Full description

Saved in:
Bibliographic Details
Main Authors: Khan, M.A.U., Khan, M.K., Khan, M.A., Ibrahim, M.T., Ahmed, M.K., Baig, J.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 124
container_issue
container_start_page 118
container_title
container_volume
creator Khan, M.A.U.
Khan, M.K.
Khan, M.A.
Ibrahim, M.T.
Ahmed, M.K.
Baig, J.A.
description This study addresses new face recognition method based on principal component analysis (PCA) and directional filter bank (DFB) responses. Our method consists of two parts. One is the creation of directional images using DFB from the original face image. The other is transforming the directional images into eigenspace by PCA, which is able to optimally classify individual facial representations. PCA analysis is primarily used as a dimensionality reduction technique with least consideration to the recognition aspect. The basic idea of combining PCA and DFB is to provide PCA with some recognition ability. In our system recognition ability of the PCA is enhanced by providing directional images as inputs. The experiment results showed the remarkable improvement of recognition rate of 21. 25% in Olivetti data set.
doi_str_mv 10.1109/INMIC.2004.1492857
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1492857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1492857</ieee_id><sourcerecordid>1492857</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4399414a0074743130f33338d31b44e1929051f4c3fe60fd5602a3eebfe261613</originalsourceid><addsrcrecordid>eNotT8tKxDAUDYigjvMDuskPtN6bm6TNshQfhfGx0PWQtjdDtNMObRX8ezs4Z3MeHA4cIW4QUkRwd9XLc1WmCkCnqJ3KTXYmriDLgXKbg7sQ62n6hAXkjDXqUhTV_jAOP9zKt7KQtZ8WFXzDcuRm2PVxjkMvv6fY72Qbl-zofSdD7GYel37_dS3Og-8mXp94JT4e7t_Lp2Tz-liVxSaJmJk50eScRu0BMp1pQoJAC_KWsNaa0SkHBoNuKLCF0BoLyhNzHVhZtEgrcfu_G5l5exjj3o-_29NL-gPWFUaj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved PCA based face recognition using directional filter bank</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Khan, M.A.U. ; Khan, M.K. ; Khan, M.A. ; Ibrahim, M.T. ; Ahmed, M.K. ; Baig, J.A.</creator><creatorcontrib>Khan, M.A.U. ; Khan, M.K. ; Khan, M.A. ; Ibrahim, M.T. ; Ahmed, M.K. ; Baig, J.A.</creatorcontrib><description>This study addresses new face recognition method based on principal component analysis (PCA) and directional filter bank (DFB) responses. Our method consists of two parts. One is the creation of directional images using DFB from the original face image. The other is transforming the directional images into eigenspace by PCA, which is able to optimally classify individual facial representations. PCA analysis is primarily used as a dimensionality reduction technique with least consideration to the recognition aspect. The basic idea of combining PCA and DFB is to provide PCA with some recognition ability. In our system recognition ability of the PCA is enhanced by providing directional images as inputs. The experiment results showed the remarkable improvement of recognition rate of 21. 25% in Olivetti data set.</description><identifier>ISBN: 0780386809</identifier><identifier>ISBN: 9780780386808</identifier><identifier>DOI: 10.1109/INMIC.2004.1492857</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Face recognition ; Filter bank ; Fingerprint recognition ; Gabor filters ; Image analysis ; Image matching ; Linear discriminant analysis ; Principal component analysis ; Scattering</subject><ispartof>8th International Multitopic Conference, 2004. Proceedings of INMIC 2004, 2004, p.118-124</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1492857$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1492857$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, M.A.U.</creatorcontrib><creatorcontrib>Khan, M.K.</creatorcontrib><creatorcontrib>Khan, M.A.</creatorcontrib><creatorcontrib>Ibrahim, M.T.</creatorcontrib><creatorcontrib>Ahmed, M.K.</creatorcontrib><creatorcontrib>Baig, J.A.</creatorcontrib><title>Improved PCA based face recognition using directional filter bank</title><title>8th International Multitopic Conference, 2004. Proceedings of INMIC 2004</title><addtitle>INMIC</addtitle><description>This study addresses new face recognition method based on principal component analysis (PCA) and directional filter bank (DFB) responses. Our method consists of two parts. One is the creation of directional images using DFB from the original face image. The other is transforming the directional images into eigenspace by PCA, which is able to optimally classify individual facial representations. PCA analysis is primarily used as a dimensionality reduction technique with least consideration to the recognition aspect. The basic idea of combining PCA and DFB is to provide PCA with some recognition ability. In our system recognition ability of the PCA is enhanced by providing directional images as inputs. The experiment results showed the remarkable improvement of recognition rate of 21. 25% in Olivetti data set.</description><subject>Educational institutions</subject><subject>Face recognition</subject><subject>Filter bank</subject><subject>Fingerprint recognition</subject><subject>Gabor filters</subject><subject>Image analysis</subject><subject>Image matching</subject><subject>Linear discriminant analysis</subject><subject>Principal component analysis</subject><subject>Scattering</subject><isbn>0780386809</isbn><isbn>9780780386808</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT8tKxDAUDYigjvMDuskPtN6bm6TNshQfhfGx0PWQtjdDtNMObRX8ezs4Z3MeHA4cIW4QUkRwd9XLc1WmCkCnqJ3KTXYmriDLgXKbg7sQ62n6hAXkjDXqUhTV_jAOP9zKt7KQtZ8WFXzDcuRm2PVxjkMvv6fY72Qbl-zofSdD7GYel37_dS3Og-8mXp94JT4e7t_Lp2Tz-liVxSaJmJk50eScRu0BMp1pQoJAC_KWsNaa0SkHBoNuKLCF0BoLyhNzHVhZtEgrcfu_G5l5exjj3o-_29NL-gPWFUaj</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Khan, M.A.U.</creator><creator>Khan, M.K.</creator><creator>Khan, M.A.</creator><creator>Ibrahim, M.T.</creator><creator>Ahmed, M.K.</creator><creator>Baig, J.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2004</creationdate><title>Improved PCA based face recognition using directional filter bank</title><author>Khan, M.A.U. ; Khan, M.K. ; Khan, M.A. ; Ibrahim, M.T. ; Ahmed, M.K. ; Baig, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4399414a0074743130f33338d31b44e1929051f4c3fe60fd5602a3eebfe261613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Educational institutions</topic><topic>Face recognition</topic><topic>Filter bank</topic><topic>Fingerprint recognition</topic><topic>Gabor filters</topic><topic>Image analysis</topic><topic>Image matching</topic><topic>Linear discriminant analysis</topic><topic>Principal component analysis</topic><topic>Scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, M.A.U.</creatorcontrib><creatorcontrib>Khan, M.K.</creatorcontrib><creatorcontrib>Khan, M.A.</creatorcontrib><creatorcontrib>Ibrahim, M.T.</creatorcontrib><creatorcontrib>Ahmed, M.K.</creatorcontrib><creatorcontrib>Baig, J.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, M.A.U.</au><au>Khan, M.K.</au><au>Khan, M.A.</au><au>Ibrahim, M.T.</au><au>Ahmed, M.K.</au><au>Baig, J.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved PCA based face recognition using directional filter bank</atitle><btitle>8th International Multitopic Conference, 2004. Proceedings of INMIC 2004</btitle><stitle>INMIC</stitle><date>2004</date><risdate>2004</risdate><spage>118</spage><epage>124</epage><pages>118-124</pages><isbn>0780386809</isbn><isbn>9780780386808</isbn><abstract>This study addresses new face recognition method based on principal component analysis (PCA) and directional filter bank (DFB) responses. Our method consists of two parts. One is the creation of directional images using DFB from the original face image. The other is transforming the directional images into eigenspace by PCA, which is able to optimally classify individual facial representations. PCA analysis is primarily used as a dimensionality reduction technique with least consideration to the recognition aspect. The basic idea of combining PCA and DFB is to provide PCA with some recognition ability. In our system recognition ability of the PCA is enhanced by providing directional images as inputs. The experiment results showed the remarkable improvement of recognition rate of 21. 25% in Olivetti data set.</abstract><pub>IEEE</pub><doi>10.1109/INMIC.2004.1492857</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780386809
ispartof 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004, 2004, p.118-124
issn
language eng
recordid cdi_ieee_primary_1492857
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Face recognition
Filter bank
Fingerprint recognition
Gabor filters
Image analysis
Image matching
Linear discriminant analysis
Principal component analysis
Scattering
title Improved PCA based face recognition using directional filter bank
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20PCA%20based%20face%20recognition%20using%20directional%20filter%20bank&rft.btitle=8th%20International%20Multitopic%20Conference,%202004.%20Proceedings%20of%20INMIC%202004&rft.au=Khan,%20M.A.U.&rft.date=2004&rft.spage=118&rft.epage=124&rft.pages=118-124&rft.isbn=0780386809&rft.isbn_list=9780780386808&rft_id=info:doi/10.1109/INMIC.2004.1492857&rft_dat=%3Cieee_6IE%3E1492857%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4399414a0074743130f33338d31b44e1929051f4c3fe60fd5602a3eebfe261613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1492857&rfr_iscdi=true