Loading…

Reactive systems over cospans

The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimi...

Full description

Saved in:
Bibliographic Details
Main Authors: Sassone, V., Sobocinski, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 320
container_issue
container_start_page 311
container_title
container_volume
creator Sassone, V.
Sobocinski, P.
description The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategones of cospans. The construction sheds light on as well as extends Ehrig and Konig's rewriting via borrowed contexts and opens the way to a unified treatment of several applications.
doi_str_mv 10.1109/LICS.2005.40
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1509235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1509235</ieee_id><sourcerecordid>1509235</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-896f63f62e6de35a3fa09103d657d1c97526600d934c79a77c3aea10dac54df83</originalsourceid><addsrcrecordid>eNotzk1LAzEQgOHgB7it3ryJsH8g25nMTrI5yuJHYUGoei4hmcCKtWWzFPrvFfT03h5epW4RGkTwq2HdvzUGgJsWzlRl2LFmNt25WoCzno2xFi9UhdCStp3DK7Uo5RMAjG2hUvcbCXEej1KXU5llV-r9UaY67sshfJdrdZnDV5Gb_y7Vx9Pje_-ih9fndf8w6NEgzbrzNlvK1ohNQhwoB_AIlCy7hNE7_r0ASJ7a6HxwLlKQgJBC5Dbljpbq7s8dRWR7mMZdmE5bZPCGmH4AFzI8oA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reactive systems over cospans</title><source>IEEE Xplore All Conference Series</source><creator>Sassone, V. ; Sobocinski, P.</creator><creatorcontrib>Sassone, V. ; Sobocinski, P.</creatorcontrib><description>The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategones of cospans. The construction sheds light on as well as extends Ehrig and Konig's rewriting via borrowed contexts and opens the way to a unified treatment of several applications.</description><identifier>ISSN: 1043-6871</identifier><identifier>ISBN: 0769522661</identifier><identifier>ISBN: 9780769522661</identifier><identifier>EISSN: 2575-5528</identifier><identifier>DOI: 10.1109/LICS.2005.40</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Bipartite graph ; Computer architecture ; Computer science ; Computer security ; Concurrent computing ; Logic ; Mobile computing ; National security</subject><ispartof>20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), 2005, p.311-320</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1509235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1509235$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sassone, V.</creatorcontrib><creatorcontrib>Sobocinski, P.</creatorcontrib><title>Reactive systems over cospans</title><title>20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05)</title><addtitle>LICS</addtitle><description>The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategones of cospans. The construction sheds light on as well as extends Ehrig and Konig's rewriting via borrowed contexts and opens the way to a unified treatment of several applications.</description><subject>Algebra</subject><subject>Bipartite graph</subject><subject>Computer architecture</subject><subject>Computer science</subject><subject>Computer security</subject><subject>Concurrent computing</subject><subject>Logic</subject><subject>Mobile computing</subject><subject>National security</subject><issn>1043-6871</issn><issn>2575-5528</issn><isbn>0769522661</isbn><isbn>9780769522661</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzk1LAzEQgOHgB7it3ryJsH8g25nMTrI5yuJHYUGoei4hmcCKtWWzFPrvFfT03h5epW4RGkTwq2HdvzUGgJsWzlRl2LFmNt25WoCzno2xFi9UhdCStp3DK7Uo5RMAjG2hUvcbCXEej1KXU5llV-r9UaY67sshfJdrdZnDV5Gb_y7Vx9Pje_-ih9fndf8w6NEgzbrzNlvK1ohNQhwoB_AIlCy7hNE7_r0ASJ7a6HxwLlKQgJBC5Dbljpbq7s8dRWR7mMZdmE5bZPCGmH4AFzI8oA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Sassone, V.</creator><creator>Sobocinski, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Reactive systems over cospans</title><author>Sassone, V. ; Sobocinski, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-896f63f62e6de35a3fa09103d657d1c97526600d934c79a77c3aea10dac54df83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Bipartite graph</topic><topic>Computer architecture</topic><topic>Computer science</topic><topic>Computer security</topic><topic>Concurrent computing</topic><topic>Logic</topic><topic>Mobile computing</topic><topic>National security</topic><toplevel>online_resources</toplevel><creatorcontrib>Sassone, V.</creatorcontrib><creatorcontrib>Sobocinski, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sassone, V.</au><au>Sobocinski, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reactive systems over cospans</atitle><btitle>20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05)</btitle><stitle>LICS</stitle><date>2005</date><risdate>2005</risdate><spage>311</spage><epage>320</epage><pages>311-320</pages><issn>1043-6871</issn><eissn>2575-5528</eissn><isbn>0769522661</isbn><isbn>9780769522661</isbn><abstract>The theory of reactive systems, introduced by Leifer and Milner and previously extended by the authors, allows the derivation of well-behaved labelled transition systems (LTS) for semantic models with an underlying reduction semantics. The derivation procedure requires the presence of certain colimits (or, more usually and generally, bicolimits) which need to be constructed separately within each model. In this paper, we offer a general construction of such bicolimits in a class of bicategones of cospans. The construction sheds light on as well as extends Ehrig and Konig's rewriting via borrowed contexts and opens the way to a unified treatment of several applications.</abstract><pub>IEEE</pub><doi>10.1109/LICS.2005.40</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1043-6871
ispartof 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), 2005, p.311-320
issn 1043-6871
2575-5528
language eng
recordid cdi_ieee_primary_1509235
source IEEE Xplore All Conference Series
subjects Algebra
Bipartite graph
Computer architecture
Computer science
Computer security
Concurrent computing
Logic
Mobile computing
National security
title Reactive systems over cospans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reactive%20systems%20over%20cospans&rft.btitle=20th%20Annual%20IEEE%20Symposium%20on%20Logic%20in%20Computer%20Science%20(LICS'%2005)&rft.au=Sassone,%20V.&rft.date=2005&rft.spage=311&rft.epage=320&rft.pages=311-320&rft.issn=1043-6871&rft.eissn=2575-5528&rft.isbn=0769522661&rft.isbn_list=9780769522661&rft_id=info:doi/10.1109/LICS.2005.40&rft_dat=%3Cieee_CHZPO%3E1509235%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i213t-896f63f62e6de35a3fa09103d657d1c97526600d934c79a77c3aea10dac54df83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1509235&rfr_iscdi=true