Loading…
Super-resolution SAR imaging via nonlinear regressive model parameter estimation method
A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 72 |
container_issue | |
container_start_page | 67 |
container_title | |
container_volume | |
creator | Wang Xiong-liang Wang Zheng-ming |
description | A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers. |
doi_str_mv | 10.1109/CGIV.2005.72 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1521041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1521041</ieee_id><sourcerecordid>1521041</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b1fbaebf74bd1a2e70ee41dd15098261e38716d6b59847e025615908e9080c593</originalsourceid><addsrcrecordid>eNotTk1LAzEUDIig1t68eckf2PpestlsjmXRWigI1o9jyZq3a2S_SLYF_71BHRgGhplhGLtBWCGCuas227eVAFArLc7YFejCKCGN0BdsGeMXJEiTS1CX7H1_nChkgeLYHWc_Dny_fua-t60fWn7ylg_j0PmBbOCB2pSL_kS8Hx11fLLB9jRT4BTn1PntJ-NzdNfsvLFdpOW_Ltjrw_1L9Zjtnjbbar3LPGo1ZzU2taW60Xnt0ArSQJSjc6jAlKJAkqXGwhW1MmWuCYQqUBkoKRE-lJELdvu364noMIX0InwfUAmEHOUPUpFPTA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang Xiong-liang ; Wang Zheng-ming</creator><creatorcontrib>Wang Xiong-liang ; Wang Zheng-ming</creatorcontrib><description>A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.</description><identifier>ISBN: 0769523927</identifier><identifier>ISBN: 9780769523927</identifier><identifier>DOI: 10.1109/CGIV.2005.72</identifier><language>eng</language><publisher>IEEE</publisher><subject>Frequency ; High-resolution imaging ; History ; Image resolution ; Light scattering ; Parameter estimation ; Phase estimation ; Radar polarimetry ; Radar scattering ; Scattering parameters</subject><ispartof>International Conference on Computer Graphics, Imaging and Visualization (CGIV'05), 2005, p.67-72</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1521041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1521041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang Xiong-liang</creatorcontrib><creatorcontrib>Wang Zheng-ming</creatorcontrib><title>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</title><title>International Conference on Computer Graphics, Imaging and Visualization (CGIV'05)</title><addtitle>CGIV</addtitle><description>A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.</description><subject>Frequency</subject><subject>High-resolution imaging</subject><subject>History</subject><subject>Image resolution</subject><subject>Light scattering</subject><subject>Parameter estimation</subject><subject>Phase estimation</subject><subject>Radar polarimetry</subject><subject>Radar scattering</subject><subject>Scattering parameters</subject><isbn>0769523927</isbn><isbn>9780769523927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTk1LAzEUDIig1t68eckf2PpestlsjmXRWigI1o9jyZq3a2S_SLYF_71BHRgGhplhGLtBWCGCuas227eVAFArLc7YFejCKCGN0BdsGeMXJEiTS1CX7H1_nChkgeLYHWc_Dny_fua-t60fWn7ylg_j0PmBbOCB2pSL_kS8Hx11fLLB9jRT4BTn1PntJ-NzdNfsvLFdpOW_Ltjrw_1L9Zjtnjbbar3LPGo1ZzU2taW60Xnt0ArSQJSjc6jAlKJAkqXGwhW1MmWuCYQqUBkoKRE-lJELdvu364noMIX0InwfUAmEHOUPUpFPTA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Wang Xiong-liang</creator><creator>Wang Zheng-ming</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</title><author>Wang Xiong-liang ; Wang Zheng-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b1fbaebf74bd1a2e70ee41dd15098261e38716d6b59847e025615908e9080c593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Frequency</topic><topic>High-resolution imaging</topic><topic>History</topic><topic>Image resolution</topic><topic>Light scattering</topic><topic>Parameter estimation</topic><topic>Phase estimation</topic><topic>Radar polarimetry</topic><topic>Radar scattering</topic><topic>Scattering parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang Xiong-liang</creatorcontrib><creatorcontrib>Wang Zheng-ming</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang Xiong-liang</au><au>Wang Zheng-ming</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</atitle><btitle>International Conference on Computer Graphics, Imaging and Visualization (CGIV'05)</btitle><stitle>CGIV</stitle><date>2005</date><risdate>2005</risdate><spage>67</spage><epage>72</epage><pages>67-72</pages><isbn>0769523927</isbn><isbn>9780769523927</isbn><abstract>A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.</abstract><pub>IEEE</pub><doi>10.1109/CGIV.2005.72</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769523927 |
ispartof | International Conference on Computer Graphics, Imaging and Visualization (CGIV'05), 2005, p.67-72 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1521041 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Frequency High-resolution imaging History Image resolution Light scattering Parameter estimation Phase estimation Radar polarimetry Radar scattering Scattering parameters |
title | Super-resolution SAR imaging via nonlinear regressive model parameter estimation method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Super-resolution%20SAR%20imaging%20via%20nonlinear%20regressive%20model%20parameter%20estimation%20method&rft.btitle=International%20Conference%20on%20Computer%20Graphics,%20Imaging%20and%20Visualization%20(CGIV'05)&rft.au=Wang%20Xiong-liang&rft.date=2005&rft.spage=67&rft.epage=72&rft.pages=67-72&rft.isbn=0769523927&rft.isbn_list=9780769523927&rft_id=info:doi/10.1109/CGIV.2005.72&rft_dat=%3Cieee_6IE%3E1521041%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b1fbaebf74bd1a2e70ee41dd15098261e38716d6b59847e025615908e9080c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1521041&rfr_iscdi=true |