Loading…

Super-resolution SAR imaging via nonlinear regressive model parameter estimation method

A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang Xiong-liang, Wang Zheng-ming
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 72
container_issue
container_start_page 67
container_title
container_volume
creator Wang Xiong-liang
Wang Zheng-ming
description A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.
doi_str_mv 10.1109/CGIV.2005.72
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1521041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1521041</ieee_id><sourcerecordid>1521041</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b1fbaebf74bd1a2e70ee41dd15098261e38716d6b59847e025615908e9080c593</originalsourceid><addsrcrecordid>eNotTk1LAzEUDIig1t68eckf2PpestlsjmXRWigI1o9jyZq3a2S_SLYF_71BHRgGhplhGLtBWCGCuas227eVAFArLc7YFejCKCGN0BdsGeMXJEiTS1CX7H1_nChkgeLYHWc_Dny_fua-t60fWn7ylg_j0PmBbOCB2pSL_kS8Hx11fLLB9jRT4BTn1PntJ-NzdNfsvLFdpOW_Ltjrw_1L9Zjtnjbbar3LPGo1ZzU2taW60Xnt0ArSQJSjc6jAlKJAkqXGwhW1MmWuCYQqUBkoKRE-lJELdvu364noMIX0InwfUAmEHOUPUpFPTA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wang Xiong-liang ; Wang Zheng-ming</creator><creatorcontrib>Wang Xiong-liang ; Wang Zheng-ming</creatorcontrib><description>A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.</description><identifier>ISBN: 0769523927</identifier><identifier>ISBN: 9780769523927</identifier><identifier>DOI: 10.1109/CGIV.2005.72</identifier><language>eng</language><publisher>IEEE</publisher><subject>Frequency ; High-resolution imaging ; History ; Image resolution ; Light scattering ; Parameter estimation ; Phase estimation ; Radar polarimetry ; Radar scattering ; Scattering parameters</subject><ispartof>International Conference on Computer Graphics, Imaging and Visualization (CGIV'05), 2005, p.67-72</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1521041$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1521041$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang Xiong-liang</creatorcontrib><creatorcontrib>Wang Zheng-ming</creatorcontrib><title>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</title><title>International Conference on Computer Graphics, Imaging and Visualization (CGIV'05)</title><addtitle>CGIV</addtitle><description>A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.</description><subject>Frequency</subject><subject>High-resolution imaging</subject><subject>History</subject><subject>Image resolution</subject><subject>Light scattering</subject><subject>Parameter estimation</subject><subject>Phase estimation</subject><subject>Radar polarimetry</subject><subject>Radar scattering</subject><subject>Scattering parameters</subject><isbn>0769523927</isbn><isbn>9780769523927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTk1LAzEUDIig1t68eckf2PpestlsjmXRWigI1o9jyZq3a2S_SLYF_71BHRgGhplhGLtBWCGCuas227eVAFArLc7YFejCKCGN0BdsGeMXJEiTS1CX7H1_nChkgeLYHWc_Dny_fua-t60fWn7ylg_j0PmBbOCB2pSL_kS8Hx11fLLB9jRT4BTn1PntJ-NzdNfsvLFdpOW_Ltjrw_1L9Zjtnjbbar3LPGo1ZzU2taW60Xnt0ArSQJSjc6jAlKJAkqXGwhW1MmWuCYQqUBkoKRE-lJELdvu364noMIX0InwfUAmEHOUPUpFPTA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Wang Xiong-liang</creator><creator>Wang Zheng-ming</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</title><author>Wang Xiong-liang ; Wang Zheng-ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b1fbaebf74bd1a2e70ee41dd15098261e38716d6b59847e025615908e9080c593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Frequency</topic><topic>High-resolution imaging</topic><topic>History</topic><topic>Image resolution</topic><topic>Light scattering</topic><topic>Parameter estimation</topic><topic>Phase estimation</topic><topic>Radar polarimetry</topic><topic>Radar scattering</topic><topic>Scattering parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang Xiong-liang</creatorcontrib><creatorcontrib>Wang Zheng-ming</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang Xiong-liang</au><au>Wang Zheng-ming</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Super-resolution SAR imaging via nonlinear regressive model parameter estimation method</atitle><btitle>International Conference on Computer Graphics, Imaging and Visualization (CGIV'05)</btitle><stitle>CGIV</stitle><date>2005</date><risdate>2005</risdate><spage>67</spage><epage>72</epage><pages>67-72</pages><isbn>0769523927</isbn><isbn>9780769523927</isbn><abstract>A novel SAR super-resolution imaging method is described Firstly, SAR image peak extraction is carried out in the image domain and the coarse feature parameter estimation is obtained. Secondly, Parameter estimation of nonlinear regressive model is carried out in the phase history domain and the fine feature parameter estimation is obtained. Finally, from the estimated parameter and based on the point-scattering model, the simulated phase history data of large dimensions is generated. By FFT imaging, higher resolution image is obtained. Experimental examples have shown that this method offer significant advantages over the FFT methods to better resolve the dominant target scatterers.</abstract><pub>IEEE</pub><doi>10.1109/CGIV.2005.72</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0769523927
ispartof International Conference on Computer Graphics, Imaging and Visualization (CGIV'05), 2005, p.67-72
issn
language eng
recordid cdi_ieee_primary_1521041
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Frequency
High-resolution imaging
History
Image resolution
Light scattering
Parameter estimation
Phase estimation
Radar polarimetry
Radar scattering
Scattering parameters
title Super-resolution SAR imaging via nonlinear regressive model parameter estimation method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Super-resolution%20SAR%20imaging%20via%20nonlinear%20regressive%20model%20parameter%20estimation%20method&rft.btitle=International%20Conference%20on%20Computer%20Graphics,%20Imaging%20and%20Visualization%20(CGIV'05)&rft.au=Wang%20Xiong-liang&rft.date=2005&rft.spage=67&rft.epage=72&rft.pages=67-72&rft.isbn=0769523927&rft.isbn_list=9780769523927&rft_id=info:doi/10.1109/CGIV.2005.72&rft_dat=%3Cieee_6IE%3E1521041%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-b1fbaebf74bd1a2e70ee41dd15098261e38716d6b59847e025615908e9080c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1521041&rfr_iscdi=true