Loading…

A content-based approach for deciding the key frames in computer vision

The utilization of the key frames in computer vision would economize the storage capacity and also reduce the search amount of image information. In addition, visual processes can be recovered via the key frames. The content-based key frame in computer vision is defined, and a content-based approach...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong-Fa Gao, Shao-Fa Li, Yan Wo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4990 Vol. 8
container_issue
container_start_page 4983
container_title
container_volume 8
creator Dong-Fa Gao
Shao-Fa Li
Yan Wo
description The utilization of the key frames in computer vision would economize the storage capacity and also reduce the search amount of image information. In addition, visual processes can be recovered via the key frames. The content-based key frame in computer vision is defined, and a content-based approach for deciding the key frames in computer vision is proposed in this paper. Level-set-based geodesic active contours method is adopted in this approach to acquiring the accurate contours of the moving object. The normalized contours of the moving objects are transformed with wavelet. The whole shapes of the contours are described by scale coefficients of wavelet, and details of the contours are particularly described by the parameters of wavelet coefficients Gaussian density distribution. The contents of the vision are understood from the whole and details. The experiments show that the approach is effective and practicable.
doi_str_mv 10.1109/ICMLC.2005.1527821
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1527821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1527821</ieee_id><sourcerecordid>1527821</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-50d49a77a02e54b241a21c259cd9783cbd54deffc7a0b519695fc0c3fe6ecda73</originalsourceid><addsrcrecordid>eNotj81KAzEUhQMqWGtfQDd5gRnvTSYzk2UZtC2MuFFwVzLJjY06PySj0Le3YM_mbL7zwWHsDiFHBP2wa57bJhcAKkclqlrgBbuBqgapQSNesoXAEjKU8v2arVL6hFOkVqWEBdusuR2HmYY560wix800xdHYA_dj5I5scGH44POB-BcduY-mp8TDcFr1089Mkf-GFMbhll15851ode4le3t6fG22Wfuy2TXrNgsIas4UuEKbqjIgSBWdKNAItEJp63RVS9s5VTjy3p6ITqEutfIWrPRUknWmkkt2_-8NRLSfYuhNPO7Pv-UfZzxMyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A content-based approach for deciding the key frames in computer vision</title><source>IEEE Xplore All Conference Series</source><creator>Dong-Fa Gao ; Shao-Fa Li ; Yan Wo</creator><creatorcontrib>Dong-Fa Gao ; Shao-Fa Li ; Yan Wo</creatorcontrib><description>The utilization of the key frames in computer vision would economize the storage capacity and also reduce the search amount of image information. In addition, visual processes can be recovered via the key frames. The content-based key frame in computer vision is defined, and a content-based approach for deciding the key frames in computer vision is proposed in this paper. Level-set-based geodesic active contours method is adopted in this approach to acquiring the accurate contours of the moving object. The normalized contours of the moving objects are transformed with wavelet. The whole shapes of the contours are described by scale coefficients of wavelet, and details of the contours are particularly described by the parameters of wavelet coefficients Gaussian density distribution. The contents of the vision are understood from the whole and details. The experiments show that the approach is effective and practicable.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 0780390911</identifier><identifier>ISBN: 9780780390911</identifier><identifier>DOI: 10.1109/ICMLC.2005.1527821</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active contours ; Computer science ; Computer vision ; Educational institutions ; Electronic mail ; Gaussian Density distribution ; Geodesic Active Contour ; Image storage ; Level set ; Shape ; Visual Key Frame ; Wavelet coefficients ; Wavelet Transform ; Wavelet transforms</subject><ispartof>2005 International Conference on Machine Learning and Cybernetics, 2005, Vol.8, p.4983-4990 Vol. 8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1527821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1527821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong-Fa Gao</creatorcontrib><creatorcontrib>Shao-Fa Li</creatorcontrib><creatorcontrib>Yan Wo</creatorcontrib><title>A content-based approach for deciding the key frames in computer vision</title><title>2005 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>The utilization of the key frames in computer vision would economize the storage capacity and also reduce the search amount of image information. In addition, visual processes can be recovered via the key frames. The content-based key frame in computer vision is defined, and a content-based approach for deciding the key frames in computer vision is proposed in this paper. Level-set-based geodesic active contours method is adopted in this approach to acquiring the accurate contours of the moving object. The normalized contours of the moving objects are transformed with wavelet. The whole shapes of the contours are described by scale coefficients of wavelet, and details of the contours are particularly described by the parameters of wavelet coefficients Gaussian density distribution. The contents of the vision are understood from the whole and details. The experiments show that the approach is effective and practicable.</description><subject>Active contours</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Educational institutions</subject><subject>Electronic mail</subject><subject>Gaussian Density distribution</subject><subject>Geodesic Active Contour</subject><subject>Image storage</subject><subject>Level set</subject><subject>Shape</subject><subject>Visual Key Frame</subject><subject>Wavelet coefficients</subject><subject>Wavelet Transform</subject><subject>Wavelet transforms</subject><issn>2160-133X</issn><isbn>0780390911</isbn><isbn>9780780390911</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEUhQMqWGtfQDd5gRnvTSYzk2UZtC2MuFFwVzLJjY06PySj0Le3YM_mbL7zwWHsDiFHBP2wa57bJhcAKkclqlrgBbuBqgapQSNesoXAEjKU8v2arVL6hFOkVqWEBdusuR2HmYY560wix800xdHYA_dj5I5scGH44POB-BcduY-mp8TDcFr1089Mkf-GFMbhll15851ode4le3t6fG22Wfuy2TXrNgsIas4UuEKbqjIgSBWdKNAItEJp63RVS9s5VTjy3p6ITqEutfIWrPRUknWmkkt2_-8NRLSfYuhNPO7Pv-UfZzxMyQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dong-Fa Gao</creator><creator>Shao-Fa Li</creator><creator>Yan Wo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A content-based approach for deciding the key frames in computer vision</title><author>Dong-Fa Gao ; Shao-Fa Li ; Yan Wo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-50d49a77a02e54b241a21c259cd9783cbd54deffc7a0b519695fc0c3fe6ecda73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Active contours</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Educational institutions</topic><topic>Electronic mail</topic><topic>Gaussian Density distribution</topic><topic>Geodesic Active Contour</topic><topic>Image storage</topic><topic>Level set</topic><topic>Shape</topic><topic>Visual Key Frame</topic><topic>Wavelet coefficients</topic><topic>Wavelet Transform</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong-Fa Gao</creatorcontrib><creatorcontrib>Shao-Fa Li</creatorcontrib><creatorcontrib>Yan Wo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong-Fa Gao</au><au>Shao-Fa Li</au><au>Yan Wo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A content-based approach for deciding the key frames in computer vision</atitle><btitle>2005 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2005</date><risdate>2005</risdate><volume>8</volume><spage>4983</spage><epage>4990 Vol. 8</epage><pages>4983-4990 Vol. 8</pages><issn>2160-133X</issn><isbn>0780390911</isbn><isbn>9780780390911</isbn><abstract>The utilization of the key frames in computer vision would economize the storage capacity and also reduce the search amount of image information. In addition, visual processes can be recovered via the key frames. The content-based key frame in computer vision is defined, and a content-based approach for deciding the key frames in computer vision is proposed in this paper. Level-set-based geodesic active contours method is adopted in this approach to acquiring the accurate contours of the moving object. The normalized contours of the moving objects are transformed with wavelet. The whole shapes of the contours are described by scale coefficients of wavelet, and details of the contours are particularly described by the parameters of wavelet coefficients Gaussian density distribution. The contents of the vision are understood from the whole and details. The experiments show that the approach is effective and practicable.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2005.1527821</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2005 International Conference on Machine Learning and Cybernetics, 2005, Vol.8, p.4983-4990 Vol. 8
issn 2160-133X
language eng
recordid cdi_ieee_primary_1527821
source IEEE Xplore All Conference Series
subjects Active contours
Computer science
Computer vision
Educational institutions
Electronic mail
Gaussian Density distribution
Geodesic Active Contour
Image storage
Level set
Shape
Visual Key Frame
Wavelet coefficients
Wavelet Transform
Wavelet transforms
title A content-based approach for deciding the key frames in computer vision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20content-based%20approach%20for%20deciding%20the%20key%20frames%20in%20computer%20vision&rft.btitle=2005%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Dong-Fa%20Gao&rft.date=2005&rft.volume=8&rft.spage=4983&rft.epage=4990%20Vol.%208&rft.pages=4983-4990%20Vol.%208&rft.issn=2160-133X&rft.isbn=0780390911&rft.isbn_list=9780780390911&rft_id=info:doi/10.1109/ICMLC.2005.1527821&rft_dat=%3Cieee_CHZPO%3E1527821%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-50d49a77a02e54b241a21c259cd9783cbd54deffc7a0b519695fc0c3fe6ecda73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1527821&rfr_iscdi=true