Loading…

A RBFN hierarchical clustering based network partitioning method for zonal pricing

In order to overcome the difficulty in using nodal pricing, the notion of zone is widely adopted in actual pricing scheme. The key for establishing a simple and efficient zonal pricing scheme is to accurately partition transmission network in the presence of congestion. Unfortunately, in actual powe...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongming Yang, Renjun Zhou, Jianhua Liu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 285
container_issue
container_start_page 282
container_title
container_volume
creator Hongming Yang
Renjun Zhou
Jianhua Liu
description In order to overcome the difficulty in using nodal pricing, the notion of zone is widely adopted in actual pricing scheme. The key for establishing a simple and efficient zonal pricing scheme is to accurately partition transmission network in the presence of congestion. Unfortunately, in actual power market operation, the operators usually establish zones based on their experiences, considering the locations of congested lines, without mathematical analysis. In order to achieve accurate price zone partition without any priori partition knowledge, this paper firstly extracts the sensitivities of nodal power injections to power flows on all congested lines as cluster features of nodal price. Secondly, a scale hierarchical clustering method based the radial basis function network (RBFN) for price zone partition is proposed. Finally, test results on IEEE 118-node system show the validity and feasibility of the proposed method.
doi_str_mv 10.1109/ICEEE.2005.1529627
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1529627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1529627</ieee_id><sourcerecordid>1529627</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e75092aeb2fa7b4303cf619786afb7488acc7939340521590aa34286e1c174293</originalsourceid><addsrcrecordid>eNotT9tKw0AUXBBBqfkBfdkfSNxrNvtYQ6qFolD0uZxsT8xqmpTNiujXu8UOA_MwzJwzhNxyVnDO7P26bpqmEIzpgmthS2EuSGZNxRKlFZKpK5LN8wdLkFaVil-T7ZJuH1bPtPcYILjeOxioG77miMGP77SFGfd0xPg9hU96hBB99NN4sg4Y-2lPuynQ32lMsWPwLhk35LKDYcbsrAvytmpe66d88_K4rpeb3HOjY45GMysAW9GBaZVk0nUlT--W0LVGVRU4Z6y0UjEtuLYMQCpRlcgdN0pYuSB3_70eEXfp-AHCz-68XP4BzfFOUQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A RBFN hierarchical clustering based network partitioning method for zonal pricing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hongming Yang ; Renjun Zhou ; Jianhua Liu</creator><creatorcontrib>Hongming Yang ; Renjun Zhou ; Jianhua Liu</creatorcontrib><description>In order to overcome the difficulty in using nodal pricing, the notion of zone is widely adopted in actual pricing scheme. The key for establishing a simple and efficient zonal pricing scheme is to accurately partition transmission network in the presence of congestion. Unfortunately, in actual power market operation, the operators usually establish zones based on their experiences, considering the locations of congested lines, without mathematical analysis. In order to achieve accurate price zone partition without any priori partition knowledge, this paper firstly extracts the sensitivities of nodal power injections to power flows on all congested lines as cluster features of nodal price. Secondly, a scale hierarchical clustering method based the radial basis function network (RBFN) for price zone partition is proposed. Finally, test results on IEEE 118-node system show the validity and feasibility of the proposed method.</description><identifier>ISBN: 9780780392304</identifier><identifier>ISBN: 0780392302</identifier><identifier>DOI: 10.1109/ICEEE.2005.1529627</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Clustering algorithms ; Educational institutions ; Equations ; Hierarchical clustering ; Humans ; IEEE catalog ; Joining processes ; Kernel ; power market ; price zone ; Pricing ; radial basis function network ; Radial basis function networks</subject><ispartof>2005 2nd International Conference on Electrical and Electronics Engineering, 2005, p.282-285</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1529627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1529627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hongming Yang</creatorcontrib><creatorcontrib>Renjun Zhou</creatorcontrib><creatorcontrib>Jianhua Liu</creatorcontrib><title>A RBFN hierarchical clustering based network partitioning method for zonal pricing</title><title>2005 2nd International Conference on Electrical and Electronics Engineering</title><addtitle>ICEEE</addtitle><description>In order to overcome the difficulty in using nodal pricing, the notion of zone is widely adopted in actual pricing scheme. The key for establishing a simple and efficient zonal pricing scheme is to accurately partition transmission network in the presence of congestion. Unfortunately, in actual power market operation, the operators usually establish zones based on their experiences, considering the locations of congested lines, without mathematical analysis. In order to achieve accurate price zone partition without any priori partition knowledge, this paper firstly extracts the sensitivities of nodal power injections to power flows on all congested lines as cluster features of nodal price. Secondly, a scale hierarchical clustering method based the radial basis function network (RBFN) for price zone partition is proposed. Finally, test results on IEEE 118-node system show the validity and feasibility of the proposed method.</description><subject>Cities and towns</subject><subject>Clustering algorithms</subject><subject>Educational institutions</subject><subject>Equations</subject><subject>Hierarchical clustering</subject><subject>Humans</subject><subject>IEEE catalog</subject><subject>Joining processes</subject><subject>Kernel</subject><subject>power market</subject><subject>price zone</subject><subject>Pricing</subject><subject>radial basis function network</subject><subject>Radial basis function networks</subject><isbn>9780780392304</isbn><isbn>0780392302</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT9tKw0AUXBBBqfkBfdkfSNxrNvtYQ6qFolD0uZxsT8xqmpTNiujXu8UOA_MwzJwzhNxyVnDO7P26bpqmEIzpgmthS2EuSGZNxRKlFZKpK5LN8wdLkFaVil-T7ZJuH1bPtPcYILjeOxioG77miMGP77SFGfd0xPg9hU96hBB99NN4sg4Y-2lPuynQ32lMsWPwLhk35LKDYcbsrAvytmpe66d88_K4rpeb3HOjY45GMysAW9GBaZVk0nUlT--W0LVGVRU4Z6y0UjEtuLYMQCpRlcgdN0pYuSB3_70eEXfp-AHCz-68XP4BzfFOUQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hongming Yang</creator><creator>Renjun Zhou</creator><creator>Jianhua Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A RBFN hierarchical clustering based network partitioning method for zonal pricing</title><author>Hongming Yang ; Renjun Zhou ; Jianhua Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e75092aeb2fa7b4303cf619786afb7488acc7939340521590aa34286e1c174293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cities and towns</topic><topic>Clustering algorithms</topic><topic>Educational institutions</topic><topic>Equations</topic><topic>Hierarchical clustering</topic><topic>Humans</topic><topic>IEEE catalog</topic><topic>Joining processes</topic><topic>Kernel</topic><topic>power market</topic><topic>price zone</topic><topic>Pricing</topic><topic>radial basis function network</topic><topic>Radial basis function networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Hongming Yang</creatorcontrib><creatorcontrib>Renjun Zhou</creatorcontrib><creatorcontrib>Jianhua Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hongming Yang</au><au>Renjun Zhou</au><au>Jianhua Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A RBFN hierarchical clustering based network partitioning method for zonal pricing</atitle><btitle>2005 2nd International Conference on Electrical and Electronics Engineering</btitle><stitle>ICEEE</stitle><date>2005</date><risdate>2005</risdate><spage>282</spage><epage>285</epage><pages>282-285</pages><isbn>9780780392304</isbn><isbn>0780392302</isbn><abstract>In order to overcome the difficulty in using nodal pricing, the notion of zone is widely adopted in actual pricing scheme. The key for establishing a simple and efficient zonal pricing scheme is to accurately partition transmission network in the presence of congestion. Unfortunately, in actual power market operation, the operators usually establish zones based on their experiences, considering the locations of congested lines, without mathematical analysis. In order to achieve accurate price zone partition without any priori partition knowledge, this paper firstly extracts the sensitivities of nodal power injections to power flows on all congested lines as cluster features of nodal price. Secondly, a scale hierarchical clustering method based the radial basis function network (RBFN) for price zone partition is proposed. Finally, test results on IEEE 118-node system show the validity and feasibility of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICEEE.2005.1529627</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780392304
ispartof 2005 2nd International Conference on Electrical and Electronics Engineering, 2005, p.282-285
issn
language eng
recordid cdi_ieee_primary_1529627
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cities and towns
Clustering algorithms
Educational institutions
Equations
Hierarchical clustering
Humans
IEEE catalog
Joining processes
Kernel
power market
price zone
Pricing
radial basis function network
Radial basis function networks
title A RBFN hierarchical clustering based network partitioning method for zonal pricing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20RBFN%20hierarchical%20clustering%20based%20network%20partitioning%20method%20for%20zonal%20pricing&rft.btitle=2005%202nd%20International%20Conference%20on%20Electrical%20and%20Electronics%20Engineering&rft.au=Hongming%20Yang&rft.date=2005&rft.spage=282&rft.epage=285&rft.pages=282-285&rft.isbn=9780780392304&rft.isbn_list=0780392302&rft_id=info:doi/10.1109/ICEEE.2005.1529627&rft_dat=%3Cieee_6IE%3E1529627%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e75092aeb2fa7b4303cf619786afb7488acc7939340521590aa34286e1c174293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1529627&rfr_iscdi=true