Loading…
Variants of multidimensional scaling for node localization
Recently multidimensional scaling (MDS) has been successfully applied to the problem of node localization in ad-hoc networks, such as wireless sensor networks. The MDS-MAP method uses MDS to compute a local, relative map at each node from the distance or proximity information of its neighboring node...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 146 Vol. 1 |
container_issue | |
container_start_page | 140 |
container_title | |
container_volume | 1 |
creator | Ahmed, A.A. Yi Shang Hongchi Shi |
description | Recently multidimensional scaling (MDS) has been successfully applied to the problem of node localization in ad-hoc networks, such as wireless sensor networks. The MDS-MAP method uses MDS to compute a local, relative map at each node from the distance or proximity information of its neighboring nodes. Based on the local maps and the locations of a set of anchor nodes with known locations, the absolute positions of unknown nodes in the network can be computed. We investigate several variants of MDS and their effects on the accuracy of localization in wireless sensor networks. We compare metric scaling and non-metric scaling methods, each with several different optimization criteria. Simulation results show that different optimization models of metric scaling achieve comparable localization accuracy and non-metric scaling achieves more accurate results than metric scaling for sparse networks at the expense of higher computational cost. |
doi_str_mv | 10.1109/ICPADS.2005.292 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1531119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1531119</ieee_id><sourcerecordid>1531119</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-77042390d0c8235ba9b7f7130163763cc87e5497ce37b7e01910d70dcadda2903</originalsourceid><addsrcrecordid>eNotjEtLxDAURoMPsIxdu3CTP9B6b9L09robqqMDAwo-tkOapBLpQ9q60F_viH6bA-fAJ8QFQo4IfLWtH9c3T7kCMLlidSQSVTJkhktzLFKmCqhko1SFxYlI0CjMGJjORDrP73BYYZCUTsT1q52iHZZZjq3sP7sl-tiHYY7jYDs5O9vF4U224ySH0QfZjb_m2y6Hfi5OW9vNIf3nSrxsbp_r-2z3cLet17ssIpklI4JCaQYPrlLaNJYbagk1YKmp1M5VFEzB5IKmhgIgI3gC76z3VjHolbj8-40hhP3HFHs7fe3RaERk_QNVEUlG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Variants of multidimensional scaling for node localization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ahmed, A.A. ; Yi Shang ; Hongchi Shi</creator><creatorcontrib>Ahmed, A.A. ; Yi Shang ; Hongchi Shi</creatorcontrib><description>Recently multidimensional scaling (MDS) has been successfully applied to the problem of node localization in ad-hoc networks, such as wireless sensor networks. The MDS-MAP method uses MDS to compute a local, relative map at each node from the distance or proximity information of its neighboring nodes. Based on the local maps and the locations of a set of anchor nodes with known locations, the absolute positions of unknown nodes in the network can be computed. We investigate several variants of MDS and their effects on the accuracy of localization in wireless sensor networks. We compare metric scaling and non-metric scaling methods, each with several different optimization criteria. Simulation results show that different optimization models of metric scaling achieve comparable localization accuracy and non-metric scaling achieves more accurate results than metric scaling for sparse networks at the expense of higher computational cost.</description><identifier>ISSN: 1521-9097</identifier><identifier>ISBN: 9780769522814</identifier><identifier>ISBN: 0769522815</identifier><identifier>EISSN: 2690-5965</identifier><identifier>DOI: 10.1109/ICPADS.2005.292</identifier><language>eng</language><publisher>IEEE</publisher><subject>Ad hoc networks ; Cities and towns ; Computational efficiency ; Computational modeling ; Computer networks ; Computer science ; Data visualization ; Multidimensional systems ; Optimization methods ; Wireless sensor networks</subject><ispartof>11th International Conference on Parallel and Distributed Systems (ICPADS'05), 2005, Vol.1, p.140-146 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1531119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1531119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmed, A.A.</creatorcontrib><creatorcontrib>Yi Shang</creatorcontrib><creatorcontrib>Hongchi Shi</creatorcontrib><title>Variants of multidimensional scaling for node localization</title><title>11th International Conference on Parallel and Distributed Systems (ICPADS'05)</title><addtitle>ICPADS</addtitle><description>Recently multidimensional scaling (MDS) has been successfully applied to the problem of node localization in ad-hoc networks, such as wireless sensor networks. The MDS-MAP method uses MDS to compute a local, relative map at each node from the distance or proximity information of its neighboring nodes. Based on the local maps and the locations of a set of anchor nodes with known locations, the absolute positions of unknown nodes in the network can be computed. We investigate several variants of MDS and their effects on the accuracy of localization in wireless sensor networks. We compare metric scaling and non-metric scaling methods, each with several different optimization criteria. Simulation results show that different optimization models of metric scaling achieve comparable localization accuracy and non-metric scaling achieves more accurate results than metric scaling for sparse networks at the expense of higher computational cost.</description><subject>Ad hoc networks</subject><subject>Cities and towns</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>Data visualization</subject><subject>Multidimensional systems</subject><subject>Optimization methods</subject><subject>Wireless sensor networks</subject><issn>1521-9097</issn><issn>2690-5965</issn><isbn>9780769522814</isbn><isbn>0769522815</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjEtLxDAURoMPsIxdu3CTP9B6b9L09robqqMDAwo-tkOapBLpQ9q60F_viH6bA-fAJ8QFQo4IfLWtH9c3T7kCMLlidSQSVTJkhktzLFKmCqhko1SFxYlI0CjMGJjORDrP73BYYZCUTsT1q52iHZZZjq3sP7sl-tiHYY7jYDs5O9vF4U224ySH0QfZjb_m2y6Hfi5OW9vNIf3nSrxsbp_r-2z3cLet17ssIpklI4JCaQYPrlLaNJYbagk1YKmp1M5VFEzB5IKmhgIgI3gC76z3VjHolbj8-40hhP3HFHs7fe3RaERk_QNVEUlG</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ahmed, A.A.</creator><creator>Yi Shang</creator><creator>Hongchi Shi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Variants of multidimensional scaling for node localization</title><author>Ahmed, A.A. ; Yi Shang ; Hongchi Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-77042390d0c8235ba9b7f7130163763cc87e5497ce37b7e01910d70dcadda2903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Ad hoc networks</topic><topic>Cities and towns</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>Data visualization</topic><topic>Multidimensional systems</topic><topic>Optimization methods</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, A.A.</creatorcontrib><creatorcontrib>Yi Shang</creatorcontrib><creatorcontrib>Hongchi Shi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, A.A.</au><au>Yi Shang</au><au>Hongchi Shi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Variants of multidimensional scaling for node localization</atitle><btitle>11th International Conference on Parallel and Distributed Systems (ICPADS'05)</btitle><stitle>ICPADS</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>140</spage><epage>146 Vol. 1</epage><pages>140-146 Vol. 1</pages><issn>1521-9097</issn><eissn>2690-5965</eissn><isbn>9780769522814</isbn><isbn>0769522815</isbn><abstract>Recently multidimensional scaling (MDS) has been successfully applied to the problem of node localization in ad-hoc networks, such as wireless sensor networks. The MDS-MAP method uses MDS to compute a local, relative map at each node from the distance or proximity information of its neighboring nodes. Based on the local maps and the locations of a set of anchor nodes with known locations, the absolute positions of unknown nodes in the network can be computed. We investigate several variants of MDS and their effects on the accuracy of localization in wireless sensor networks. We compare metric scaling and non-metric scaling methods, each with several different optimization criteria. Simulation results show that different optimization models of metric scaling achieve comparable localization accuracy and non-metric scaling achieves more accurate results than metric scaling for sparse networks at the expense of higher computational cost.</abstract><pub>IEEE</pub><doi>10.1109/ICPADS.2005.292</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-9097 |
ispartof | 11th International Conference on Parallel and Distributed Systems (ICPADS'05), 2005, Vol.1, p.140-146 Vol. 1 |
issn | 1521-9097 2690-5965 |
language | eng |
recordid | cdi_ieee_primary_1531119 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Ad hoc networks Cities and towns Computational efficiency Computational modeling Computer networks Computer science Data visualization Multidimensional systems Optimization methods Wireless sensor networks |
title | Variants of multidimensional scaling for node localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Variants%20of%20multidimensional%20scaling%20for%20node%20localization&rft.btitle=11th%20International%20Conference%20on%20Parallel%20and%20Distributed%20Systems%20(ICPADS'05)&rft.au=Ahmed,%20A.A.&rft.date=2005&rft.volume=1&rft.spage=140&rft.epage=146%20Vol.%201&rft.pages=140-146%20Vol.%201&rft.issn=1521-9097&rft.eissn=2690-5965&rft.isbn=9780769522814&rft.isbn_list=0769522815&rft_id=info:doi/10.1109/ICPADS.2005.292&rft_dat=%3Cieee_6IE%3E1531119%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-77042390d0c8235ba9b7f7130163763cc87e5497ce37b7e01910d70dcadda2903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1531119&rfr_iscdi=true |