Loading…
Integration of planning and execution in force controlled compliant motion
This paper presents the compliant task generator: a new approach for the automatic conversion of a geometric path generated by a compliant path planner to a force based task specification for a compliant robot controller. Based on the geometric model of a moving object and its environment, a complia...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1222 |
container_issue | |
container_start_page | 1217 |
container_title | |
container_volume | |
creator | Meeussen, W. De Schutter, J. Bruyninckx, H. Jing Xiao Staffetti, E. |
description | This paper presents the compliant task generator: a new approach for the automatic conversion of a geometric path generated by a compliant path planner to a force based task specification for a compliant robot controller. Based on the geometric model of a moving object and its environment, a compliant path planner generates a set of six-dimensional positions x/sub 1...m/ and their corresponding contact formations CF/sub 1...n/. The compliant force controller, which executes a planned path under force feedback using the hybrid control paradigm, expects a desired force w/sub d/, velocity t/sub d/ and position x/sub d/ at each time-step, together with their force and velocity controlled subspaces W and T. To specify these controller primitives, we add information about the desired dynamic interaction between the moving object and its environment, in the form of the desired kinetic energy E/sub kin/ of the moving object and the potential energy E/sub pot/ in the contacts with the environment, together with the inertia and stiffness matrix M and S. We fully automated the conversion process of the compliant planner output together with the added information about the dynamic interaction, to a force based task specification. This eliminates the requirement of human intervention between the planning and execution phase. The presented approach applies to all compliant motions between polyhedral objects, and is verified in a real world experiment. |
doi_str_mv | 10.1109/IROS.2005.1545360 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1545360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1545360</ieee_id><sourcerecordid>1545360</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4b5800da78651f9fb9139b3fe365f987c648f0b8ce110a8fa15d6b535d8d44b3</originalsourceid><addsrcrecordid>eNo9UF9LwzAcDP4B59wHEF_yBVp_afJLk0cZOiuDge59JE0yIm1a2gr67a06vJc7uOPgjpBbBjljoO-r191bXgBgzlAgl3BGFgVDnoGS8pxcQ6mAK80KfvFvoLoiq3F8hxlco2DlgrxUafLHwUyxS7QLtG9MSjEdqUmO-k9ff_w6MdHQDbWndZemoWsa72bZ9k00aaJt9xO6IZfBNKNfnXhJ9k-P-_Vztt1tqvXDNousxCkTFhWAM6WSyIIOVjOuLQ-eSwxalbUUKoBVtZ-HGhUMQyctcnTKCWH5ktz91Ubv_aEfYmuGr8PpBf4NemNPTg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Integration of planning and execution in force controlled compliant motion</title><source>IEEE Xplore All Conference Series</source><creator>Meeussen, W. ; De Schutter, J. ; Bruyninckx, H. ; Jing Xiao ; Staffetti, E.</creator><creatorcontrib>Meeussen, W. ; De Schutter, J. ; Bruyninckx, H. ; Jing Xiao ; Staffetti, E.</creatorcontrib><description>This paper presents the compliant task generator: a new approach for the automatic conversion of a geometric path generated by a compliant path planner to a force based task specification for a compliant robot controller. Based on the geometric model of a moving object and its environment, a compliant path planner generates a set of six-dimensional positions x/sub 1...m/ and their corresponding contact formations CF/sub 1...n/. The compliant force controller, which executes a planned path under force feedback using the hybrid control paradigm, expects a desired force w/sub d/, velocity t/sub d/ and position x/sub d/ at each time-step, together with their force and velocity controlled subspaces W and T. To specify these controller primitives, we add information about the desired dynamic interaction between the moving object and its environment, in the form of the desired kinetic energy E/sub kin/ of the moving object and the potential energy E/sub pot/ in the contacts with the environment, together with the inertia and stiffness matrix M and S. We fully automated the conversion process of the compliant planner output together with the added information about the dynamic interaction, to a force based task specification. This eliminates the requirement of human intervention between the planning and execution phase. The presented approach applies to all compliant motions between polyhedral objects, and is verified in a real world experiment.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 0780389123</identifier><identifier>ISBN: 9780780389120</identifier><identifier>EISSN: 2153-0866</identifier><identifier>DOI: 10.1109/IROS.2005.1545360</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Automatic generation control ; Force control ; Force feedback ; Motion control ; Motion planning ; Robot control ; Robotics and automation ; Solid modeling ; Velocity control</subject><ispartof>2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, p.1217-1222</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1545360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1545360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meeussen, W.</creatorcontrib><creatorcontrib>De Schutter, J.</creatorcontrib><creatorcontrib>Bruyninckx, H.</creatorcontrib><creatorcontrib>Jing Xiao</creatorcontrib><creatorcontrib>Staffetti, E.</creatorcontrib><title>Integration of planning and execution in force controlled compliant motion</title><title>2005 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>This paper presents the compliant task generator: a new approach for the automatic conversion of a geometric path generated by a compliant path planner to a force based task specification for a compliant robot controller. Based on the geometric model of a moving object and its environment, a compliant path planner generates a set of six-dimensional positions x/sub 1...m/ and their corresponding contact formations CF/sub 1...n/. The compliant force controller, which executes a planned path under force feedback using the hybrid control paradigm, expects a desired force w/sub d/, velocity t/sub d/ and position x/sub d/ at each time-step, together with their force and velocity controlled subspaces W and T. To specify these controller primitives, we add information about the desired dynamic interaction between the moving object and its environment, in the form of the desired kinetic energy E/sub kin/ of the moving object and the potential energy E/sub pot/ in the contacts with the environment, together with the inertia and stiffness matrix M and S. We fully automated the conversion process of the compliant planner output together with the added information about the dynamic interaction, to a force based task specification. This eliminates the requirement of human intervention between the planning and execution phase. The presented approach applies to all compliant motions between polyhedral objects, and is verified in a real world experiment.</description><subject>Automatic control</subject><subject>Automatic generation control</subject><subject>Force control</subject><subject>Force feedback</subject><subject>Motion control</subject><subject>Motion planning</subject><subject>Robot control</subject><subject>Robotics and automation</subject><subject>Solid modeling</subject><subject>Velocity control</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>0780389123</isbn><isbn>9780780389120</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UF9LwzAcDP4B59wHEF_yBVp_afJLk0cZOiuDge59JE0yIm1a2gr67a06vJc7uOPgjpBbBjljoO-r191bXgBgzlAgl3BGFgVDnoGS8pxcQ6mAK80KfvFvoLoiq3F8hxlco2DlgrxUafLHwUyxS7QLtG9MSjEdqUmO-k9ff_w6MdHQDbWndZemoWsa72bZ9k00aaJt9xO6IZfBNKNfnXhJ9k-P-_Vztt1tqvXDNousxCkTFhWAM6WSyIIOVjOuLQ-eSwxalbUUKoBVtZ-HGhUMQyctcnTKCWH5ktz91Ubv_aEfYmuGr8PpBf4NemNPTg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Meeussen, W.</creator><creator>De Schutter, J.</creator><creator>Bruyninckx, H.</creator><creator>Jing Xiao</creator><creator>Staffetti, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Integration of planning and execution in force controlled compliant motion</title><author>Meeussen, W. ; De Schutter, J. ; Bruyninckx, H. ; Jing Xiao ; Staffetti, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4b5800da78651f9fb9139b3fe365f987c648f0b8ce110a8fa15d6b535d8d44b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Automatic control</topic><topic>Automatic generation control</topic><topic>Force control</topic><topic>Force feedback</topic><topic>Motion control</topic><topic>Motion planning</topic><topic>Robot control</topic><topic>Robotics and automation</topic><topic>Solid modeling</topic><topic>Velocity control</topic><toplevel>online_resources</toplevel><creatorcontrib>Meeussen, W.</creatorcontrib><creatorcontrib>De Schutter, J.</creatorcontrib><creatorcontrib>Bruyninckx, H.</creatorcontrib><creatorcontrib>Jing Xiao</creatorcontrib><creatorcontrib>Staffetti, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meeussen, W.</au><au>De Schutter, J.</au><au>Bruyninckx, H.</au><au>Jing Xiao</au><au>Staffetti, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Integration of planning and execution in force controlled compliant motion</atitle><btitle>2005 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2005</date><risdate>2005</risdate><spage>1217</spage><epage>1222</epage><pages>1217-1222</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>0780389123</isbn><isbn>9780780389120</isbn><abstract>This paper presents the compliant task generator: a new approach for the automatic conversion of a geometric path generated by a compliant path planner to a force based task specification for a compliant robot controller. Based on the geometric model of a moving object and its environment, a compliant path planner generates a set of six-dimensional positions x/sub 1...m/ and their corresponding contact formations CF/sub 1...n/. The compliant force controller, which executes a planned path under force feedback using the hybrid control paradigm, expects a desired force w/sub d/, velocity t/sub d/ and position x/sub d/ at each time-step, together with their force and velocity controlled subspaces W and T. To specify these controller primitives, we add information about the desired dynamic interaction between the moving object and its environment, in the form of the desired kinetic energy E/sub kin/ of the moving object and the potential energy E/sub pot/ in the contacts with the environment, together with the inertia and stiffness matrix M and S. We fully automated the conversion process of the compliant planner output together with the added information about the dynamic interaction, to a force based task specification. This eliminates the requirement of human intervention between the planning and execution phase. The presented approach applies to all compliant motions between polyhedral objects, and is verified in a real world experiment.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2005.1545360</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, p.1217-1222 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_1545360 |
source | IEEE Xplore All Conference Series |
subjects | Automatic control Automatic generation control Force control Force feedback Motion control Motion planning Robot control Robotics and automation Solid modeling Velocity control |
title | Integration of planning and execution in force controlled compliant motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Integration%20of%20planning%20and%20execution%20in%20force%20controlled%20compliant%20motion&rft.btitle=2005%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Meeussen,%20W.&rft.date=2005&rft.spage=1217&rft.epage=1222&rft.pages=1217-1222&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=0780389123&rft.isbn_list=9780780389120&rft_id=info:doi/10.1109/IROS.2005.1545360&rft_dat=%3Cieee_CHZPO%3E1545360%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-4b5800da78651f9fb9139b3fe365f987c648f0b8ce110a8fa15d6b535d8d44b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1545360&rfr_iscdi=true |