Loading…

Multi-objective evolutionary fuzzy cognitive maps for decision support

This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenar...

Full description

Saved in:
Bibliographic Details
Main Authors: Mateou, N.H., Moiseos, M., Andreou, A.S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 830 Vol.1
container_issue
container_start_page 824
container_title
container_volume 1
creator Mateou, N.H.
Moiseos, M.
Andreou, A.S.
description This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined
doi_str_mv 10.1109/CEC.2005.1554768
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1554768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1554768</ieee_id><sourcerecordid>1554768</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-180b05983ed5b1ae243b158ad75ab506a9e0a95a677c39c10dce7bcd3236299e3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYFvdC27yBxLvzWReSwltFSpuFNyVmcmNTEmbkEkK7a83aFdn8R0-zmHsESFDBPNcLsssBxAZClEoqa_YDE2BKUAur9kclAZuuOTiZgKgTaqU_r5j8xh3AFgINDO2eh-bIaSt25EfwpESOrbNOIT2YPtTUo_n8ynx7c8h_MG97WJSt31SkQ9xKiVx7Lq2H-7ZbW2bSA-XXLCv1fKzfE03H-u38mWTBlRiSFGDA2E0p0o4tJQX3KHQtlLCOgHSGgJrhJVKeW48QuVJOV_xnMvcGOIL9vTvDUS07fqwn2ZuL__5L9eATe4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-objective evolutionary fuzzy cognitive maps for decision support</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mateou, N.H. ; Moiseos, M. ; Andreou, A.S.</creator><creatorcontrib>Mateou, N.H. ; Moiseos, M. ; Andreou, A.S.</creatorcontrib><description>This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 0780393635</identifier><identifier>ISBN: 9780780393639</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2005.1554768</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Computer science ; Decision making ; Fuzzy cognitive maps ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy reasoning ; Genetic algorithms ; Neural networks ; Problem-solving</subject><ispartof>2005 IEEE Congress on Evolutionary Computation, 2005, Vol.1, p.824-830 Vol.1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1554768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1554768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mateou, N.H.</creatorcontrib><creatorcontrib>Moiseos, M.</creatorcontrib><creatorcontrib>Andreou, A.S.</creatorcontrib><title>Multi-objective evolutionary fuzzy cognitive maps for decision support</title><title>2005 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined</description><subject>Computer networks</subject><subject>Computer science</subject><subject>Decision making</subject><subject>Fuzzy cognitive maps</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy reasoning</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Problem-solving</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>0780393635</isbn><isbn>9780780393639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLw0AUhQcfYFvdC27yBxLvzWReSwltFSpuFNyVmcmNTEmbkEkK7a83aFdn8R0-zmHsESFDBPNcLsssBxAZClEoqa_YDE2BKUAur9kclAZuuOTiZgKgTaqU_r5j8xh3AFgINDO2eh-bIaSt25EfwpESOrbNOIT2YPtTUo_n8ynx7c8h_MG97WJSt31SkQ9xKiVx7Lq2H-7ZbW2bSA-XXLCv1fKzfE03H-u38mWTBlRiSFGDA2E0p0o4tJQX3KHQtlLCOgHSGgJrhJVKeW48QuVJOV_xnMvcGOIL9vTvDUS07fqwn2ZuL__5L9eATe4</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mateou, N.H.</creator><creator>Moiseos, M.</creator><creator>Andreou, A.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Multi-objective evolutionary fuzzy cognitive maps for decision support</title><author>Mateou, N.H. ; Moiseos, M. ; Andreou, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-180b05983ed5b1ae243b158ad75ab506a9e0a95a677c39c10dce7bcd3236299e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer networks</topic><topic>Computer science</topic><topic>Decision making</topic><topic>Fuzzy cognitive maps</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy reasoning</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Problem-solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mateou, N.H.</creatorcontrib><creatorcontrib>Moiseos, M.</creatorcontrib><creatorcontrib>Andreou, A.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mateou, N.H.</au><au>Moiseos, M.</au><au>Andreou, A.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective evolutionary fuzzy cognitive maps for decision support</atitle><btitle>2005 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>824</spage><epage>830 Vol.1</epage><pages>824-830 Vol.1</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>0780393635</isbn><isbn>9780780393639</isbn><abstract>This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined</abstract><pub>IEEE</pub><doi>10.1109/CEC.2005.1554768</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2005 IEEE Congress on Evolutionary Computation, 2005, Vol.1, p.824-830 Vol.1
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1554768
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer networks
Computer science
Decision making
Fuzzy cognitive maps
Fuzzy logic
Fuzzy neural networks
Fuzzy reasoning
Genetic algorithms
Neural networks
Problem-solving
title Multi-objective evolutionary fuzzy cognitive maps for decision support
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20evolutionary%20fuzzy%20cognitive%20maps%20for%20decision%20support&rft.btitle=2005%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Mateou,%20N.H.&rft.date=2005&rft.volume=1&rft.spage=824&rft.epage=830%20Vol.1&rft.pages=824-830%20Vol.1&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=0780393635&rft.isbn_list=9780780393639&rft_id=info:doi/10.1109/CEC.2005.1554768&rft_dat=%3Cieee_6IE%3E1554768%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-180b05983ed5b1ae243b158ad75ab506a9e0a95a677c39c10dce7bcd3236299e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1554768&rfr_iscdi=true