Loading…
Multi-objective evolutionary fuzzy cognitive maps for decision support
This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenar...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 830 Vol.1 |
container_issue | |
container_start_page | 824 |
container_title | |
container_volume | 1 |
creator | Mateou, N.H. Moiseos, M. Andreou, A.S. |
description | This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined |
doi_str_mv | 10.1109/CEC.2005.1554768 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1554768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1554768</ieee_id><sourcerecordid>1554768</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-180b05983ed5b1ae243b158ad75ab506a9e0a95a677c39c10dce7bcd3236299e3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYFvdC27yBxLvzWReSwltFSpuFNyVmcmNTEmbkEkK7a83aFdn8R0-zmHsESFDBPNcLsssBxAZClEoqa_YDE2BKUAur9kclAZuuOTiZgKgTaqU_r5j8xh3AFgINDO2eh-bIaSt25EfwpESOrbNOIT2YPtTUo_n8ynx7c8h_MG97WJSt31SkQ9xKiVx7Lq2H-7ZbW2bSA-XXLCv1fKzfE03H-u38mWTBlRiSFGDA2E0p0o4tJQX3KHQtlLCOgHSGgJrhJVKeW48QuVJOV_xnMvcGOIL9vTvDUS07fqwn2ZuL__5L9eATe4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-objective evolutionary fuzzy cognitive maps for decision support</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mateou, N.H. ; Moiseos, M. ; Andreou, A.S.</creator><creatorcontrib>Mateou, N.H. ; Moiseos, M. ; Andreou, A.S.</creatorcontrib><description>This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 0780393635</identifier><identifier>ISBN: 9780780393639</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2005.1554768</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Computer science ; Decision making ; Fuzzy cognitive maps ; Fuzzy logic ; Fuzzy neural networks ; Fuzzy reasoning ; Genetic algorithms ; Neural networks ; Problem-solving</subject><ispartof>2005 IEEE Congress on Evolutionary Computation, 2005, Vol.1, p.824-830 Vol.1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1554768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1554768$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mateou, N.H.</creatorcontrib><creatorcontrib>Moiseos, M.</creatorcontrib><creatorcontrib>Andreou, A.S.</creatorcontrib><title>Multi-objective evolutionary fuzzy cognitive maps for decision support</title><title>2005 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined</description><subject>Computer networks</subject><subject>Computer science</subject><subject>Decision making</subject><subject>Fuzzy cognitive maps</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy reasoning</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Problem-solving</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>0780393635</isbn><isbn>9780780393639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj0tLw0AUhQcfYFvdC27yBxLvzWReSwltFSpuFNyVmcmNTEmbkEkK7a83aFdn8R0-zmHsESFDBPNcLsssBxAZClEoqa_YDE2BKUAur9kclAZuuOTiZgKgTaqU_r5j8xh3AFgINDO2eh-bIaSt25EfwpESOrbNOIT2YPtTUo_n8ynx7c8h_MG97WJSt31SkQ9xKiVx7Lq2H-7ZbW2bSA-XXLCv1fKzfE03H-u38mWTBlRiSFGDA2E0p0o4tJQX3KHQtlLCOgHSGgJrhJVKeW48QuVJOV_xnMvcGOIL9vTvDUS07fqwn2ZuL__5L9eATe4</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mateou, N.H.</creator><creator>Moiseos, M.</creator><creator>Andreou, A.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Multi-objective evolutionary fuzzy cognitive maps for decision support</title><author>Mateou, N.H. ; Moiseos, M. ; Andreou, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-180b05983ed5b1ae243b158ad75ab506a9e0a95a677c39c10dce7bcd3236299e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer networks</topic><topic>Computer science</topic><topic>Decision making</topic><topic>Fuzzy cognitive maps</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy reasoning</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Problem-solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mateou, N.H.</creatorcontrib><creatorcontrib>Moiseos, M.</creatorcontrib><creatorcontrib>Andreou, A.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mateou, N.H.</au><au>Moiseos, M.</au><au>Andreou, A.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective evolutionary fuzzy cognitive maps for decision support</atitle><btitle>2005 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>824</spage><epage>830 Vol.1</epage><pages>824-830 Vol.1</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>0780393635</isbn><isbn>9780780393639</isbn><abstract>This paper proposes an extension of genetically evolved fuzzy cognitive maps (GEFCMs) used for decision-making, aiming at increasing their reliability and overcoming its main weakness which lies with the recalculation of weights corresponding to more than one concept every time a new multiple scenario is introduced. A new evolutionary approach is proposed to support multi-objective decision-making based on the introduction of a dedicated genetic algorithm (GA), which is responsible for finding an optimal weight matrix that satisfies two or more activation levels among the participating concept nodes. This evolutionary methodology is very appealing since it offers the optimal solution without a problem-solving strategy once the requirements are defined</abstract><pub>IEEE</pub><doi>10.1109/CEC.2005.1554768</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2005 IEEE Congress on Evolutionary Computation, 2005, Vol.1, p.824-830 Vol.1 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_1554768 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer networks Computer science Decision making Fuzzy cognitive maps Fuzzy logic Fuzzy neural networks Fuzzy reasoning Genetic algorithms Neural networks Problem-solving |
title | Multi-objective evolutionary fuzzy cognitive maps for decision support |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20evolutionary%20fuzzy%20cognitive%20maps%20for%20decision%20support&rft.btitle=2005%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Mateou,%20N.H.&rft.date=2005&rft.volume=1&rft.spage=824&rft.epage=830%20Vol.1&rft.pages=824-830%20Vol.1&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=0780393635&rft.isbn_list=9780780393639&rft_id=info:doi/10.1109/CEC.2005.1554768&rft_dat=%3Cieee_6IE%3E1554768%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-180b05983ed5b1ae243b158ad75ab506a9e0a95a677c39c10dce7bcd3236299e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1554768&rfr_iscdi=true |