Loading…
Comparing algorithms, representations and operators for the multi-objective knapsack problem
This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2. |
---|---|
ISSN: | 1089-778X 1941-0026 |
DOI: | 10.1109/CEC.2005.1554836 |