Loading…
Comparing algorithms, representations and operators for the multi-objective knapsack problem
This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573 |
---|---|
cites | |
container_end_page | 1275 Vol. 2 |
container_issue | |
container_start_page | 1268 |
container_title | |
container_volume | 2 |
creator | Colombo, G. Mumford, C.L. |
description | This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2. |
doi_str_mv | 10.1109/CEC.2005.1554836 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1554836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1554836</ieee_id><sourcerecordid>1554836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMf4Da9F7zJD7AzafImzaWU-QEDbxS8EEaavt2ytU1JouC_d-CuzoEHDg-HkFvOlpwz81Cv6mXJGCw5gKyEOiMzbiQvGCvVOZkzXTFhhBJwcQSsMoXW1ecVmae0Z4xL4GZGvuowTDb6cUttvw3R592Q7mnEKWLCMdvsw5ioHVsaJow2h5hoFyLNO6TDd599EZo9uux_kB5GOyXrDnSKoelxuCaXne0T3pxyQT6eVu_1S7F-e36tH9eFK5XMRQWN646uXBsjQVmQIEDJigMD3YlScNHqxkg8lo5rZRxvnWbWtbKBErRYkLv_XY-Imyn6wcbfzekV8QeMJ1SH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing algorithms, representations and operators for the multi-objective knapsack problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Colombo, G. ; Mumford, C.L.</creator><creatorcontrib>Colombo, G. ; Mumford, C.L.</creatorcontrib><description>This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 0780393635</identifier><identifier>ISBN: 9780780393639</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2005.1554836</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Computer science ; Decoding ; Evolutionary computation ; Genetics ; Pareto optimization ; Standards development ; Testing</subject><ispartof>2005 IEEE Congress on Evolutionary Computation, 2005, Vol.2, p.1268-1275 Vol. 2</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1554836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1554836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colombo, G.</creatorcontrib><creatorcontrib>Mumford, C.L.</creatorcontrib><title>Comparing algorithms, representations and operators for the multi-objective knapsack problem</title><title>2005 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.</description><subject>Biological cells</subject><subject>Computer science</subject><subject>Decoding</subject><subject>Evolutionary computation</subject><subject>Genetics</subject><subject>Pareto optimization</subject><subject>Standards development</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>0780393635</isbn><isbn>9780780393639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF1LwzAYhYMf4Da9F7zJD7AzafImzaWU-QEDbxS8EEaavt2ytU1JouC_d-CuzoEHDg-HkFvOlpwz81Cv6mXJGCw5gKyEOiMzbiQvGCvVOZkzXTFhhBJwcQSsMoXW1ecVmae0Z4xL4GZGvuowTDb6cUttvw3R592Q7mnEKWLCMdvsw5ioHVsaJow2h5hoFyLNO6TDd599EZo9uux_kB5GOyXrDnSKoelxuCaXne0T3pxyQT6eVu_1S7F-e36tH9eFK5XMRQWN646uXBsjQVmQIEDJigMD3YlScNHqxkg8lo5rZRxvnWbWtbKBErRYkLv_XY-Imyn6wcbfzekV8QeMJ1SH</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Colombo, G.</creator><creator>Mumford, C.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Comparing algorithms, representations and operators for the multi-objective knapsack problem</title><author>Colombo, G. ; Mumford, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological cells</topic><topic>Computer science</topic><topic>Decoding</topic><topic>Evolutionary computation</topic><topic>Genetics</topic><topic>Pareto optimization</topic><topic>Standards development</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombo, G.</creatorcontrib><creatorcontrib>Mumford, C.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colombo, G.</au><au>Mumford, C.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing algorithms, representations and operators for the multi-objective knapsack problem</atitle><btitle>2005 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>1268</spage><epage>1275 Vol. 2</epage><pages>1268-1275 Vol. 2</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>0780393635</isbn><isbn>9780780393639</isbn><abstract>This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2005.1554836</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | 2005 IEEE Congress on Evolutionary Computation, 2005, Vol.2, p.1268-1275 Vol. 2 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_1554836 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological cells Computer science Decoding Evolutionary computation Genetics Pareto optimization Standards development Testing |
title | Comparing algorithms, representations and operators for the multi-objective knapsack problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20algorithms,%20representations%20and%20operators%20for%20the%20multi-objective%20knapsack%20problem&rft.btitle=2005%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Colombo,%20G.&rft.date=2005&rft.volume=2&rft.spage=1268&rft.epage=1275%20Vol.%202&rft.pages=1268-1275%20Vol.%202&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=0780393635&rft.isbn_list=9780780393639&rft_id=info:doi/10.1109/CEC.2005.1554836&rft_dat=%3Cieee_6IE%3E1554836%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1554836&rfr_iscdi=true |