Loading…

Comparing algorithms, representations and operators for the multi-objective knapsack problem

This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for...

Full description

Saved in:
Bibliographic Details
Main Authors: Colombo, G., Mumford, C.L.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573
cites
container_end_page 1275 Vol. 2
container_issue
container_start_page 1268
container_title
container_volume 2
creator Colombo, G.
Mumford, C.L.
description This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.
doi_str_mv 10.1109/CEC.2005.1554836
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1554836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1554836</ieee_id><sourcerecordid>1554836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMf4Da9F7zJD7AzafImzaWU-QEDbxS8EEaavt2ytU1JouC_d-CuzoEHDg-HkFvOlpwz81Cv6mXJGCw5gKyEOiMzbiQvGCvVOZkzXTFhhBJwcQSsMoXW1ecVmae0Z4xL4GZGvuowTDb6cUttvw3R592Q7mnEKWLCMdvsw5ioHVsaJow2h5hoFyLNO6TDd599EZo9uux_kB5GOyXrDnSKoelxuCaXne0T3pxyQT6eVu_1S7F-e36tH9eFK5XMRQWN646uXBsjQVmQIEDJigMD3YlScNHqxkg8lo5rZRxvnWbWtbKBErRYkLv_XY-Imyn6wcbfzekV8QeMJ1SH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparing algorithms, representations and operators for the multi-objective knapsack problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Colombo, G. ; Mumford, C.L.</creator><creatorcontrib>Colombo, G. ; Mumford, C.L.</creatorcontrib><description>This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 0780393635</identifier><identifier>ISBN: 9780780393639</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/CEC.2005.1554836</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Computer science ; Decoding ; Evolutionary computation ; Genetics ; Pareto optimization ; Standards development ; Testing</subject><ispartof>2005 IEEE Congress on Evolutionary Computation, 2005, Vol.2, p.1268-1275 Vol. 2</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1554836$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54796,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1554836$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Colombo, G.</creatorcontrib><creatorcontrib>Mumford, C.L.</creatorcontrib><title>Comparing algorithms, representations and operators for the multi-objective knapsack problem</title><title>2005 IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.</description><subject>Biological cells</subject><subject>Computer science</subject><subject>Decoding</subject><subject>Evolutionary computation</subject><subject>Genetics</subject><subject>Pareto optimization</subject><subject>Standards development</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>0780393635</isbn><isbn>9780780393639</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkF1LwzAYhYMf4Da9F7zJD7AzafImzaWU-QEDbxS8EEaavt2ytU1JouC_d-CuzoEHDg-HkFvOlpwz81Cv6mXJGCw5gKyEOiMzbiQvGCvVOZkzXTFhhBJwcQSsMoXW1ecVmae0Z4xL4GZGvuowTDb6cUttvw3R592Q7mnEKWLCMdvsw5ioHVsaJow2h5hoFyLNO6TDd599EZo9uux_kB5GOyXrDnSKoelxuCaXne0T3pxyQT6eVu_1S7F-e36tH9eFK5XMRQWN646uXBsjQVmQIEDJigMD3YlScNHqxkg8lo5rZRxvnWbWtbKBErRYkLv_XY-Imyn6wcbfzekV8QeMJ1SH</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Colombo, G.</creator><creator>Mumford, C.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Comparing algorithms, representations and operators for the multi-objective knapsack problem</title><author>Colombo, G. ; Mumford, C.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological cells</topic><topic>Computer science</topic><topic>Decoding</topic><topic>Evolutionary computation</topic><topic>Genetics</topic><topic>Pareto optimization</topic><topic>Standards development</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombo, G.</creatorcontrib><creatorcontrib>Mumford, C.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Colombo, G.</au><au>Mumford, C.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparing algorithms, representations and operators for the multi-objective knapsack problem</atitle><btitle>2005 IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>1268</spage><epage>1275 Vol. 2</epage><pages>1268-1275 Vol. 2</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>0780393635</isbn><isbn>9780780393639</isbn><abstract>This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2005.1554836</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof 2005 IEEE Congress on Evolutionary Computation, 2005, Vol.2, p.1268-1275 Vol. 2
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_1554836
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Computer science
Decoding
Evolutionary computation
Genetics
Pareto optimization
Standards development
Testing
title Comparing algorithms, representations and operators for the multi-objective knapsack problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparing%20algorithms,%20representations%20and%20operators%20for%20the%20multi-objective%20knapsack%20problem&rft.btitle=2005%20IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Colombo,%20G.&rft.date=2005&rft.volume=2&rft.spage=1268&rft.epage=1275%20Vol.%202&rft.pages=1268-1275%20Vol.%202&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=0780393635&rft.isbn_list=9780780393639&rft_id=info:doi/10.1109/CEC.2005.1554836&rft_dat=%3Cieee_6IE%3E1554836%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-85bcf8031799456a5453564815057f32313d7b94e313f1769c1dc70acd4b52573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1554836&rfr_iscdi=true