Loading…

Multiobjective optimization for dynamic environments

This paper investigates the use of evolutionary multi-objective optimization methods (EMOs) for solving single-objective optimization problems in dynamic environments. A number of authors proposed the use of EMOs for maintaining diversity in a single objective optimization task, where they transform...

Full description

Saved in:
Bibliographic Details
Main Authors: Bui, L.T., Abbass, H.A., Branke, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the use of evolutionary multi-objective optimization methods (EMOs) for solving single-objective optimization problems in dynamic environments. A number of authors proposed the use of EMOs for maintaining diversity in a single objective optimization task, where they transform the single objective optimization problem into a multi-objective optimization problem by adding an artificial objective function. We extend this work by looking at the dynamic single objective task and examine a number of different possibilities for the artificial objective function. We adopt the non-dominated sorting genetic algorithm version 2 (NSGA2). The results show that the resultant formulations are promising and competitive to other methods for handling dynamic environments.
ISSN:1089-778X
1941-0026
DOI:10.1109/CEC.2005.1554987