Loading…
A neuro-SVM model for text classification using latent semantic indexing
This paper presents a new model integrating a recurrent neural network (RNN) and a least squares support vector machine (LS-SVM) for classification of document titles according to different predetermined categories. The new model proposed in this paper is abbreviated as neuro-SVM. Based on the neuro...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new model integrating a recurrent neural network (RNN) and a least squares support vector machine (LS-SVM) for classification of document titles according to different predetermined categories. The new model proposed in this paper is abbreviated as neuro-SVM. Based on the neuro-SVM model, a system is implemented, using latent semantic indexing (LSI) to generate probabilistic coefficients from document titles, which are used as the input to the system. The system's performance is demonstrated with a corpus of 96956 words, from University of Denver's Penrose library catalogue and the accuracy rate of the proposed system is found to be 99.66%. |
---|---|
ISSN: | 2161-4393 2161-4407 |
DOI: | 10.1109/IJCNN.2005.1555893 |