Loading…
A fast neural network-based detection and tracking of dim moving targets in FLIR imagery
Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In ord...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3149 vol. 5 |
container_issue | |
container_start_page | 3144 |
container_title | |
container_volume | 5 |
creator | Patra, J.C. Widjaja, F. Das, A. Ee Luang Ang |
description | Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time. |
doi_str_mv | 10.1109/IJCNN.2005.1556430 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556430</ieee_id><sourcerecordid>1556430</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8cff5f76dfa72710c0668078a0ff1334116dd93ae55dceaa50abe7e31240475d3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhBd_wLb6AnqzL5B69i-bXJZgNRIqiIJ35TR7tqxtE9msSt_eivXqYxiYGYaxawFTIaC8rR-rxWIqAcxUGJNrBSdsJEUuMq3BnrIx2AJUCbqQZ_-GKtUFGw_DO4BUZalG7G3GPQ6Jd_QZcXtA-u7jJlvhQI47StSm0HccO8dTxHYTujXvPXdhx3f9169KGNeUBh46Pm_qZx52uKa4v2TnHrcDXR05Ya_zu5fqIWue7utq1mRBWJOyovXeeJs7j1ZaAS3keXFYjuC9UEoLkTtXKiRjXEuIBnBFlpSQGrQ1Tk3YzV9uIKLlRzzUx_3y-Ij6AcMAUzY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Patra, J.C. ; Widjaja, F. ; Das, A. ; Ee Luang Ang</creator><creatorcontrib>Patra, J.C. ; Widjaja, F. ; Das, A. ; Ee Luang Ang</creatorcontrib><description>Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556430</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering algorithms ; Intelligent networks ; Line enhancers ; Neural networks ; Object detection ; Principal component analysis ; Real time systems ; Sonar ; Target tracking</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.3144-3149 vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Widjaja, F.</creatorcontrib><creatorcontrib>Das, A.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><title>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.</description><subject>Artificial neural networks</subject><subject>Clustering algorithms</subject><subject>Intelligent networks</subject><subject>Line enhancers</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Principal component analysis</subject><subject>Real time systems</subject><subject>Sonar</subject><subject>Target tracking</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AUhBd_wLb6AnqzL5B69i-bXJZgNRIqiIJ35TR7tqxtE9msSt_eivXqYxiYGYaxawFTIaC8rR-rxWIqAcxUGJNrBSdsJEUuMq3BnrIx2AJUCbqQZ_-GKtUFGw_DO4BUZalG7G3GPQ6Jd_QZcXtA-u7jJlvhQI47StSm0HccO8dTxHYTujXvPXdhx3f9169KGNeUBh46Pm_qZx52uKa4v2TnHrcDXR05Ya_zu5fqIWue7utq1mRBWJOyovXeeJs7j1ZaAS3keXFYjuC9UEoLkTtXKiRjXEuIBnBFlpSQGrQ1Tk3YzV9uIKLlRzzUx_3y-Ij6AcMAUzY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Patra, J.C.</creator><creator>Widjaja, F.</creator><creator>Das, A.</creator><creator>Ee Luang Ang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</title><author>Patra, J.C. ; Widjaja, F. ; Das, A. ; Ee Luang Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8cff5f76dfa72710c0668078a0ff1334116dd93ae55dceaa50abe7e31240475d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Clustering algorithms</topic><topic>Intelligent networks</topic><topic>Line enhancers</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Principal component analysis</topic><topic>Real time systems</topic><topic>Sonar</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Widjaja, F.</creatorcontrib><creatorcontrib>Das, A.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patra, J.C.</au><au>Widjaja, F.</au><au>Das, A.</au><au>Ee Luang Ang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>3144</spage><epage>3149 vol. 5</epage><pages>3144-3149 vol. 5</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556430</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.3144-3149 vol. 5 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_1556430 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Clustering algorithms Intelligent networks Line enhancers Neural networks Object detection Principal component analysis Real time systems Sonar Target tracking |
title | A fast neural network-based detection and tracking of dim moving targets in FLIR imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20neural%20network-based%20detection%20and%20tracking%20of%20dim%20moving%20targets%20in%20FLIR%20imagery&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Patra,%20J.C.&rft.date=2005&rft.volume=5&rft.spage=3144&rft.epage=3149%20vol.%205&rft.pages=3144-3149%20vol.%205&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556430&rft_dat=%3Cieee_6IE%3E1556430%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8cff5f76dfa72710c0668078a0ff1334116dd93ae55dceaa50abe7e31240475d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556430&rfr_iscdi=true |