Loading…

A fast neural network-based detection and tracking of dim moving targets in FLIR imagery

Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In ord...

Full description

Saved in:
Bibliographic Details
Main Authors: Patra, J.C., Widjaja, F., Das, A., Ee Luang Ang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3149 vol. 5
container_issue
container_start_page 3144
container_title
container_volume 5
creator Patra, J.C.
Widjaja, F.
Das, A.
Ee Luang Ang
description Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.
doi_str_mv 10.1109/IJCNN.2005.1556430
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556430</ieee_id><sourcerecordid>1556430</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8cff5f76dfa72710c0668078a0ff1334116dd93ae55dceaa50abe7e31240475d3</originalsourceid><addsrcrecordid>eNo1kN1Kw0AUhBd_wLb6AnqzL5B69i-bXJZgNRIqiIJ35TR7tqxtE9msSt_eivXqYxiYGYaxawFTIaC8rR-rxWIqAcxUGJNrBSdsJEUuMq3BnrIx2AJUCbqQZ_-GKtUFGw_DO4BUZalG7G3GPQ6Jd_QZcXtA-u7jJlvhQI47StSm0HccO8dTxHYTujXvPXdhx3f9169KGNeUBh46Pm_qZx52uKa4v2TnHrcDXR05Ya_zu5fqIWue7utq1mRBWJOyovXeeJs7j1ZaAS3keXFYjuC9UEoLkTtXKiRjXEuIBnBFlpSQGrQ1Tk3YzV9uIKLlRzzUx_3y-Ij6AcMAUzY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Patra, J.C. ; Widjaja, F. ; Das, A. ; Ee Luang Ang</creator><creatorcontrib>Patra, J.C. ; Widjaja, F. ; Das, A. ; Ee Luang Ang</creatorcontrib><description>Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556430</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Clustering algorithms ; Intelligent networks ; Line enhancers ; Neural networks ; Object detection ; Principal component analysis ; Real time systems ; Sonar ; Target tracking</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.3144-3149 vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556430$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Widjaja, F.</creatorcontrib><creatorcontrib>Das, A.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><title>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.</description><subject>Artificial neural networks</subject><subject>Clustering algorithms</subject><subject>Intelligent networks</subject><subject>Line enhancers</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>Principal component analysis</subject><subject>Real time systems</subject><subject>Sonar</subject><subject>Target tracking</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kN1Kw0AUhBd_wLb6AnqzL5B69i-bXJZgNRIqiIJ35TR7tqxtE9msSt_eivXqYxiYGYaxawFTIaC8rR-rxWIqAcxUGJNrBSdsJEUuMq3BnrIx2AJUCbqQZ_-GKtUFGw_DO4BUZalG7G3GPQ6Jd_QZcXtA-u7jJlvhQI47StSm0HccO8dTxHYTujXvPXdhx3f9169KGNeUBh46Pm_qZx52uKa4v2TnHrcDXR05Ya_zu5fqIWue7utq1mRBWJOyovXeeJs7j1ZaAS3keXFYjuC9UEoLkTtXKiRjXEuIBnBFlpSQGrQ1Tk3YzV9uIKLlRzzUx_3y-Ij6AcMAUzY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Patra, J.C.</creator><creator>Widjaja, F.</creator><creator>Das, A.</creator><creator>Ee Luang Ang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</title><author>Patra, J.C. ; Widjaja, F. ; Das, A. ; Ee Luang Ang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8cff5f76dfa72710c0668078a0ff1334116dd93ae55dceaa50abe7e31240475d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Artificial neural networks</topic><topic>Clustering algorithms</topic><topic>Intelligent networks</topic><topic>Line enhancers</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>Principal component analysis</topic><topic>Real time systems</topic><topic>Sonar</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Patra, J.C.</creatorcontrib><creatorcontrib>Widjaja, F.</creatorcontrib><creatorcontrib>Das, A.</creatorcontrib><creatorcontrib>Ee Luang Ang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patra, J.C.</au><au>Widjaja, F.</au><au>Das, A.</au><au>Ee Luang Ang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A fast neural network-based detection and tracking of dim moving targets in FLIR imagery</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>3144</spage><epage>3149 vol. 5</epage><pages>3144-3149 vol. 5</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Usually the targets in forward looking infra-red imagery are dim, slowly moving, and buried under clutter and noise. Detecting and tracking of such targets is a challenging task. Although artificial neural networks (ANNs) have been used to solve this problem, they need a lot of training time. In order to reduce the training time, we propose principal component analysis as a dimension reduction technique. We used an MLP with LM learning algorithm and a RBF neural network (RBFNN) with K-means algorithm to cluster the data. Both the ANNs are used in a neural adaptive line enhancer (NALE) configuration. Extensive computer simulations showed the combination of PCA and ANNs gives satisfactory results with significant reduction in training time.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556430</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.3144-3149 vol. 5
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1556430
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Clustering algorithms
Intelligent networks
Line enhancers
Neural networks
Object detection
Principal component analysis
Real time systems
Sonar
Target tracking
title A fast neural network-based detection and tracking of dim moving targets in FLIR imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20fast%20neural%20network-based%20detection%20and%20tracking%20of%20dim%20moving%20targets%20in%20FLIR%20imagery&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Patra,%20J.C.&rft.date=2005&rft.volume=5&rft.spage=3144&rft.epage=3149%20vol.%205&rft.pages=3144-3149%20vol.%205&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556430&rft_dat=%3Cieee_6IE%3E1556430%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8cff5f76dfa72710c0668078a0ff1334116dd93ae55dceaa50abe7e31240475d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556430&rfr_iscdi=true