Loading…
Are ARIMA neural network hybrids better than single models?
Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3197 vol. 5 |
container_issue | |
container_start_page | 3192 |
container_title | |
container_volume | 5 |
creator | Taskaya-Temizel, T. Ahmad, K. |
description | Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series. |
doi_str_mv | 10.1109/IJCNN.2005.1556438 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1556438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556438</ieee_id><sourcerecordid>1556438</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-cfa50578b7917584b42234ca6d92e35c5cab27aa33e29c4561beef59f23a41d63</originalsourceid><addsrcrecordid>eNo1j11LwzAUhoMf4Db9A3qTP9B6kpM0DV5IKVMrc4Lo9UjaU1ftOkkqsn_vwHn18PLACw9jlwJSIcBeV4_lcplKAJ0KrTOF-RGbSJGJRCkwx2wKJge0oHJ58i_Q4hmbxvgBINFanLCbIhAvXqqngg_0HVy_x_izDZ98vfOhayL3NI4U-Lh2A4_d8N4T32wb6uPtOTttXR_p4sAZe7ubv5YPyeL5viqLRdIJo8ekbp0GbXJv7H7nyispUdUua6wk1LWunZfGOUSStlY6E56o1baV6JRoMpyxq7_fjohWX6HbuLBbHaLxFz__SGM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Are ARIMA neural network hybrids better than single models?</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taskaya-Temizel, T. ; Ahmad, K.</creator><creatorcontrib>Taskaya-Temizel, T. ; Ahmad, K.</creatorcontrib><description>Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 0780390482</identifier><identifier>ISBN: 9780780390485</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2005.1556438</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Chaos ; Computer networks ; Economic forecasting ; Electronic mail ; Feedforward neural networks ; Merging ; Neural networks ; Piecewise linear techniques ; Statistics</subject><ispartof>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.3192-3197 vol. 5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54536,54901,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taskaya-Temizel, T.</creatorcontrib><creatorcontrib>Ahmad, K.</creatorcontrib><title>Are ARIMA neural network hybrids better than single models?</title><title>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</title><addtitle>IJCNN</addtitle><description>Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series.</description><subject>Benchmark testing</subject><subject>Chaos</subject><subject>Computer networks</subject><subject>Economic forecasting</subject><subject>Electronic mail</subject><subject>Feedforward neural networks</subject><subject>Merging</subject><subject>Neural networks</subject><subject>Piecewise linear techniques</subject><subject>Statistics</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>0780390482</isbn><isbn>9780780390485</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j11LwzAUhoMf4Db9A3qTP9B6kpM0DV5IKVMrc4Lo9UjaU1ftOkkqsn_vwHn18PLACw9jlwJSIcBeV4_lcplKAJ0KrTOF-RGbSJGJRCkwx2wKJge0oHJ58i_Q4hmbxvgBINFanLCbIhAvXqqngg_0HVy_x_izDZ98vfOhayL3NI4U-Lh2A4_d8N4T32wb6uPtOTttXR_p4sAZe7ubv5YPyeL5viqLRdIJo8ekbp0GbXJv7H7nyispUdUua6wk1LWunZfGOUSStlY6E56o1baV6JRoMpyxq7_fjohWX6HbuLBbHaLxFz__SGM</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Taskaya-Temizel, T.</creator><creator>Ahmad, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Are ARIMA neural network hybrids better than single models?</title><author>Taskaya-Temizel, T. ; Ahmad, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-cfa50578b7917584b42234ca6d92e35c5cab27aa33e29c4561beef59f23a41d63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Benchmark testing</topic><topic>Chaos</topic><topic>Computer networks</topic><topic>Economic forecasting</topic><topic>Electronic mail</topic><topic>Feedforward neural networks</topic><topic>Merging</topic><topic>Neural networks</topic><topic>Piecewise linear techniques</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Taskaya-Temizel, T.</creatorcontrib><creatorcontrib>Ahmad, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taskaya-Temizel, T.</au><au>Ahmad, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Are ARIMA neural network hybrids better than single models?</atitle><btitle>Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005</btitle><stitle>IJCNN</stitle><date>2005</date><risdate>2005</risdate><volume>5</volume><spage>3192</spage><epage>3197 vol. 5</epage><pages>3192-3197 vol. 5</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>0780390482</isbn><isbn>9780780390485</isbn><abstract>Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2005.1556438</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 2005, Vol.5, p.3192-3197 vol. 5 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_1556438 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Chaos Computer networks Economic forecasting Electronic mail Feedforward neural networks Merging Neural networks Piecewise linear techniques Statistics |
title | Are ARIMA neural network hybrids better than single models? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Are%20ARIMA%20neural%20network%20hybrids%20better%20than%20single%20models?&rft.btitle=Proceedings.%202005%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Networks,%202005&rft.au=Taskaya-Temizel,%20T.&rft.date=2005&rft.volume=5&rft.spage=3192&rft.epage=3197%20vol.%205&rft.pages=3192-3197%20vol.%205&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=0780390482&rft.isbn_list=9780780390485&rft_id=info:doi/10.1109/IJCNN.2005.1556438&rft_dat=%3Cieee_6IE%3E1556438%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-cfa50578b7917584b42234ca6d92e35c5cab27aa33e29c4561beef59f23a41d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1556438&rfr_iscdi=true |