Loading…
Text representation: from vector to tensor
In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifacto...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 4 pp. |
container_title | |
container_volume | |
creator | Ning Liu Benyu Zhang Jun Yan Zheng Chen Wenyin Liu Fengshan Bai Leefeng Chien |
description | In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification. |
doi_str_mv | 10.1109/ICDM.2005.144 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1565767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1565767</ieee_id><sourcerecordid>1565767</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a929881685df50ed781a26d0fc942f0abb0a9f918ebb5beed79ffea88f9a710d3</originalsourceid><addsrcrecordid>eNotjE1LxDAQQIMfYFl79OSlZ6F1Js0kE2-yfi2seFnPS7qdQMVtlzSI_nsX9F3e5fGUukJoEMHfrpYPr40GoAaNOVGFbp2p2bA9VaV3DM560tqxOVMFEkFtHNsLVc7zBxwhYnSuUDcb-c5VkkOSWcYc8jCNd1VM0776kl2eUpWnKss4T-lSncfwOUv574V6f3rcLF_q9dvzanm_rgd0lOvgtWdGy9RHAukdY9C2h7jzRkcIXQfBR48sXUedHAMfowTm6IND6NuFuv77DiKyPaRhH9LPFsmSs679BcI0RFI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Text representation: from vector to tensor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ning Liu ; Benyu Zhang ; Jun Yan ; Zheng Chen ; Wenyin Liu ; Fengshan Bai ; Leefeng Chien</creator><creatorcontrib>Ning Liu ; Benyu Zhang ; Jun Yan ; Zheng Chen ; Wenyin Liu ; Fengshan Bai ; Leefeng Chien</creatorcontrib><description>In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 9780769522784</identifier><identifier>ISBN: 0769522785</identifier><identifier>EISSN: 2374-8486</identifier><identifier>DOI: 10.1109/ICDM.2005.144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asia ; Computer science ; Data mining ; Indexing ; Information retrieval ; Large scale integration ; Matrix decomposition ; Principal component analysis ; Singular value decomposition ; Tensile stress</subject><ispartof>Fifth IEEE International Conference on Data Mining (ICDM'05), 2005, p.4 pp.</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1565767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1565767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning Liu</creatorcontrib><creatorcontrib>Benyu Zhang</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Zheng Chen</creatorcontrib><creatorcontrib>Wenyin Liu</creatorcontrib><creatorcontrib>Fengshan Bai</creatorcontrib><creatorcontrib>Leefeng Chien</creatorcontrib><title>Text representation: from vector to tensor</title><title>Fifth IEEE International Conference on Data Mining (ICDM'05)</title><addtitle>ICDM</addtitle><description>In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.</description><subject>Asia</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Large scale integration</subject><subject>Matrix decomposition</subject><subject>Principal component analysis</subject><subject>Singular value decomposition</subject><subject>Tensile stress</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>9780769522784</isbn><isbn>0769522785</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LxDAQQIMfYFl79OSlZ6F1Js0kE2-yfi2seFnPS7qdQMVtlzSI_nsX9F3e5fGUukJoEMHfrpYPr40GoAaNOVGFbp2p2bA9VaV3DM560tqxOVMFEkFtHNsLVc7zBxwhYnSuUDcb-c5VkkOSWcYc8jCNd1VM0776kl2eUpWnKss4T-lSncfwOUv574V6f3rcLF_q9dvzanm_rgd0lOvgtWdGy9RHAukdY9C2h7jzRkcIXQfBR48sXUedHAMfowTm6IND6NuFuv77DiKyPaRhH9LPFsmSs679BcI0RFI</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ning Liu</creator><creator>Benyu Zhang</creator><creator>Jun Yan</creator><creator>Zheng Chen</creator><creator>Wenyin Liu</creator><creator>Fengshan Bai</creator><creator>Leefeng Chien</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Text representation: from vector to tensor</title><author>Ning Liu ; Benyu Zhang ; Jun Yan ; Zheng Chen ; Wenyin Liu ; Fengshan Bai ; Leefeng Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a929881685df50ed781a26d0fc942f0abb0a9f918ebb5beed79ffea88f9a710d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asia</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Large scale integration</topic><topic>Matrix decomposition</topic><topic>Principal component analysis</topic><topic>Singular value decomposition</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Ning Liu</creatorcontrib><creatorcontrib>Benyu Zhang</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Zheng Chen</creatorcontrib><creatorcontrib>Wenyin Liu</creatorcontrib><creatorcontrib>Fengshan Bai</creatorcontrib><creatorcontrib>Leefeng Chien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning Liu</au><au>Benyu Zhang</au><au>Jun Yan</au><au>Zheng Chen</au><au>Wenyin Liu</au><au>Fengshan Bai</au><au>Leefeng Chien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text representation: from vector to tensor</atitle><btitle>Fifth IEEE International Conference on Data Mining (ICDM'05)</btitle><stitle>ICDM</stitle><date>2005</date><risdate>2005</risdate><spage>4 pp.</spage><pages>4 pp.-</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>9780769522784</isbn><isbn>0769522785</isbn><abstract>In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2005.144</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | Fifth IEEE International Conference on Data Mining (ICDM'05), 2005, p.4 pp. |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_1565767 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Asia Computer science Data mining Indexing Information retrieval Large scale integration Matrix decomposition Principal component analysis Singular value decomposition Tensile stress |
title | Text representation: from vector to tensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20representation:%20from%20vector%20to%20tensor&rft.btitle=Fifth%20IEEE%20International%20Conference%20on%20Data%20Mining%20(ICDM'05)&rft.au=Ning%20Liu&rft.date=2005&rft.spage=4%20pp.&rft.pages=4%20pp.-&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=9780769522784&rft.isbn_list=0769522785&rft_id=info:doi/10.1109/ICDM.2005.144&rft_dat=%3Cieee_6IE%3E1565767%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a929881685df50ed781a26d0fc942f0abb0a9f918ebb5beed79ffea88f9a710d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1565767&rfr_iscdi=true |