Loading…

Text representation: from vector to tensor

In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifacto...

Full description

Saved in:
Bibliographic Details
Main Authors: Ning Liu, Benyu Zhang, Jun Yan, Zheng Chen, Wenyin Liu, Fengshan Bai, Leefeng Chien
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 4 pp.
container_title
container_volume
creator Ning Liu
Benyu Zhang
Jun Yan
Zheng Chen
Wenyin Liu
Fengshan Bai
Leefeng Chien
description In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.
doi_str_mv 10.1109/ICDM.2005.144
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1565767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1565767</ieee_id><sourcerecordid>1565767</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a929881685df50ed781a26d0fc942f0abb0a9f918ebb5beed79ffea88f9a710d3</originalsourceid><addsrcrecordid>eNotjE1LxDAQQIMfYFl79OSlZ6F1Js0kE2-yfi2seFnPS7qdQMVtlzSI_nsX9F3e5fGUukJoEMHfrpYPr40GoAaNOVGFbp2p2bA9VaV3DM560tqxOVMFEkFtHNsLVc7zBxwhYnSuUDcb-c5VkkOSWcYc8jCNd1VM0776kl2eUpWnKss4T-lSncfwOUv574V6f3rcLF_q9dvzanm_rgd0lOvgtWdGy9RHAukdY9C2h7jzRkcIXQfBR48sXUedHAMfowTm6IND6NuFuv77DiKyPaRhH9LPFsmSs679BcI0RFI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Text representation: from vector to tensor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ning Liu ; Benyu Zhang ; Jun Yan ; Zheng Chen ; Wenyin Liu ; Fengshan Bai ; Leefeng Chien</creator><creatorcontrib>Ning Liu ; Benyu Zhang ; Jun Yan ; Zheng Chen ; Wenyin Liu ; Fengshan Bai ; Leefeng Chien</creatorcontrib><description>In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.</description><identifier>ISSN: 1550-4786</identifier><identifier>ISBN: 9780769522784</identifier><identifier>ISBN: 0769522785</identifier><identifier>EISSN: 2374-8486</identifier><identifier>DOI: 10.1109/ICDM.2005.144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asia ; Computer science ; Data mining ; Indexing ; Information retrieval ; Large scale integration ; Matrix decomposition ; Principal component analysis ; Singular value decomposition ; Tensile stress</subject><ispartof>Fifth IEEE International Conference on Data Mining (ICDM'05), 2005, p.4 pp.</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1565767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1565767$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning Liu</creatorcontrib><creatorcontrib>Benyu Zhang</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Zheng Chen</creatorcontrib><creatorcontrib>Wenyin Liu</creatorcontrib><creatorcontrib>Fengshan Bai</creatorcontrib><creatorcontrib>Leefeng Chien</creatorcontrib><title>Text representation: from vector to tensor</title><title>Fifth IEEE International Conference on Data Mining (ICDM'05)</title><addtitle>ICDM</addtitle><description>In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.</description><subject>Asia</subject><subject>Computer science</subject><subject>Data mining</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Large scale integration</subject><subject>Matrix decomposition</subject><subject>Principal component analysis</subject><subject>Singular value decomposition</subject><subject>Tensile stress</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>9780769522784</isbn><isbn>0769522785</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE1LxDAQQIMfYFl79OSlZ6F1Js0kE2-yfi2seFnPS7qdQMVtlzSI_nsX9F3e5fGUukJoEMHfrpYPr40GoAaNOVGFbp2p2bA9VaV3DM560tqxOVMFEkFtHNsLVc7zBxwhYnSuUDcb-c5VkkOSWcYc8jCNd1VM0776kl2eUpWnKss4T-lSncfwOUv574V6f3rcLF_q9dvzanm_rgd0lOvgtWdGy9RHAukdY9C2h7jzRkcIXQfBR48sXUedHAMfowTm6IND6NuFuv77DiKyPaRhH9LPFsmSs679BcI0RFI</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ning Liu</creator><creator>Benyu Zhang</creator><creator>Jun Yan</creator><creator>Zheng Chen</creator><creator>Wenyin Liu</creator><creator>Fengshan Bai</creator><creator>Leefeng Chien</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Text representation: from vector to tensor</title><author>Ning Liu ; Benyu Zhang ; Jun Yan ; Zheng Chen ; Wenyin Liu ; Fengshan Bai ; Leefeng Chien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a929881685df50ed781a26d0fc942f0abb0a9f918ebb5beed79ffea88f9a710d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Asia</topic><topic>Computer science</topic><topic>Data mining</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Large scale integration</topic><topic>Matrix decomposition</topic><topic>Principal component analysis</topic><topic>Singular value decomposition</topic><topic>Tensile stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Ning Liu</creatorcontrib><creatorcontrib>Benyu Zhang</creatorcontrib><creatorcontrib>Jun Yan</creatorcontrib><creatorcontrib>Zheng Chen</creatorcontrib><creatorcontrib>Wenyin Liu</creatorcontrib><creatorcontrib>Fengshan Bai</creatorcontrib><creatorcontrib>Leefeng Chien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning Liu</au><au>Benyu Zhang</au><au>Jun Yan</au><au>Zheng Chen</au><au>Wenyin Liu</au><au>Fengshan Bai</au><au>Leefeng Chien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text representation: from vector to tensor</atitle><btitle>Fifth IEEE International Conference on Data Mining (ICDM'05)</btitle><stitle>ICDM</stitle><date>2005</date><risdate>2005</risdate><spage>4 pp.</spage><pages>4 pp.-</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><isbn>9780769522784</isbn><isbn>0769522785</isbn><abstract>In this paper, we propose a text representation model, Tensor Space Model (TSM), which models the text by multilinear algebraic high-order tensor instead of the traditional vector. Supported by techniques of multilinear algebra, TSM offers a potent mathematical framework for analyzing the multifactor structures. TSM is further supported by certain introduced particular operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for dimension reduction and other applications. Experimental results on the 20 Newsgroups dataset show that TSM is constantly better than VSM for text classification.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2005.144</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-4786
ispartof Fifth IEEE International Conference on Data Mining (ICDM'05), 2005, p.4 pp.
issn 1550-4786
2374-8486
language eng
recordid cdi_ieee_primary_1565767
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Asia
Computer science
Data mining
Indexing
Information retrieval
Large scale integration
Matrix decomposition
Principal component analysis
Singular value decomposition
Tensile stress
title Text representation: from vector to tensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20representation:%20from%20vector%20to%20tensor&rft.btitle=Fifth%20IEEE%20International%20Conference%20on%20Data%20Mining%20(ICDM'05)&rft.au=Ning%20Liu&rft.date=2005&rft.spage=4%20pp.&rft.pages=4%20pp.-&rft.issn=1550-4786&rft.eissn=2374-8486&rft.isbn=9780769522784&rft.isbn_list=0769522785&rft_id=info:doi/10.1109/ICDM.2005.144&rft_dat=%3Cieee_6IE%3E1565767%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a929881685df50ed781a26d0fc942f0abb0a9f918ebb5beed79ffea88f9a710d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1565767&rfr_iscdi=true