Loading…

Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing

Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This...

Full description

Saved in:
Bibliographic Details
Main Authors: Greenfield, A., Rizzi, A.A., Choset, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1952
container_issue
container_start_page 1947
container_title
container_volume
creator Greenfield, A.
Rizzi, A.A.
Choset, H.
description Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.
doi_str_mv 10.1109/ROBOT.2005.1570398
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1570398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1570398</ieee_id><sourcerecordid>1570398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c766eea3023009109dc449bc18ca3200a5daa81b2fcea7ce2e9227dea86449ec3</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQd_wFr7ArqZF0i9M5NkZpZttSoUCrVCN1JuJrf1SpKWJCp5eyN2dc7i8MF3hLhVMFYK_P1qOV2uxxogGavEgvHuTAx0Ym0Ezm7OxTVYB8Z5FW8uxEBBAlFstb8So6b5BADlUw-pHYj3h67CkoOclBnvv7hlaiRXcl5zaPlQYSFXvOc8yg55J1-7pqWykT_cfsjJ8VhwwL-VbA9yVnCPqPbym1FOawx9vxGXOywaGp1yKN7mj-vZc7RYPr3MJouIlU3aKNg0JUID2gD43i8PceyzoFxA00tikiM6leldILSBNHmtbU7o0n5HwQzF3T-XiWh7rLnEutuenjG_OfVW-w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Greenfield, A. ; Rizzi, A.A. ; Choset, H.</creator><creatorcontrib>Greenfield, A. ; Rizzi, A.A. ; Choset, H.</creatorcontrib><description>Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 078038914X</identifier><identifier>ISBN: 9780780389144</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.2005.1570398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Climbing ; Friction ; Gravity ; Hyper-redundant robot ; Motion analysis ; Partitioning algorithms ; Pressing ; Rigid-Body Dynamics ; Robotics and automation ; Robots ; Robustness ; Stability</subject><ispartof>Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, p.1947-1952</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1570398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1570398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Greenfield, A.</creatorcontrib><creatorcontrib>Rizzi, A.A.</creatorcontrib><creatorcontrib>Choset, H.</creatorcontrib><title>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</title><title>Proceedings of the 2005 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.</description><subject>Algorithm design and analysis</subject><subject>Climbing</subject><subject>Friction</subject><subject>Gravity</subject><subject>Hyper-redundant robot</subject><subject>Motion analysis</subject><subject>Partitioning algorithms</subject><subject>Pressing</subject><subject>Rigid-Body Dynamics</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Robustness</subject><subject>Stability</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>078038914X</isbn><isbn>9780780389144</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AUhQd_wFr7ArqZF0i9M5NkZpZttSoUCrVCN1JuJrf1SpKWJCp5eyN2dc7i8MF3hLhVMFYK_P1qOV2uxxogGavEgvHuTAx0Ym0Ezm7OxTVYB8Z5FW8uxEBBAlFstb8So6b5BADlUw-pHYj3h67CkoOclBnvv7hlaiRXcl5zaPlQYSFXvOc8yg55J1-7pqWykT_cfsjJ8VhwwL-VbA9yVnCPqPbym1FOawx9vxGXOywaGp1yKN7mj-vZc7RYPr3MJouIlU3aKNg0JUID2gD43i8PceyzoFxA00tikiM6leldILSBNHmtbU7o0n5HwQzF3T-XiWh7rLnEutuenjG_OfVW-w</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Greenfield, A.</creator><creator>Rizzi, A.A.</creator><creator>Choset, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</title><author>Greenfield, A. ; Rizzi, A.A. ; Choset, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c766eea3023009109dc449bc18ca3200a5daa81b2fcea7ce2e9227dea86449ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Climbing</topic><topic>Friction</topic><topic>Gravity</topic><topic>Hyper-redundant robot</topic><topic>Motion analysis</topic><topic>Partitioning algorithms</topic><topic>Pressing</topic><topic>Rigid-Body Dynamics</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Robustness</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenfield, A.</creatorcontrib><creatorcontrib>Rizzi, A.A.</creatorcontrib><creatorcontrib>Choset, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Greenfield, A.</au><au>Rizzi, A.A.</au><au>Choset, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</atitle><btitle>Proceedings of the 2005 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2005</date><risdate>2005</risdate><spage>1947</spage><epage>1952</epage><pages>1947-1952</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>078038914X</isbn><isbn>9780780389144</isbn><abstract>Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2005.1570398</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, p.1947-1952
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_1570398
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Climbing
Friction
Gravity
Hyper-redundant robot
Motion analysis
Partitioning algorithms
Pressing
Rigid-Body Dynamics
Robotics and automation
Robots
Robustness
Stability
title Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20Ambiguities%20in%20Frictional%20Rigid-body%20Systems%20with%20Application%20to%20Climbing%20via%20Bracing&rft.btitle=Proceedings%20of%20the%202005%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Greenfield,%20A.&rft.date=2005&rft.spage=1947&rft.epage=1952&rft.pages=1947-1952&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=078038914X&rft.isbn_list=9780780389144&rft_id=info:doi/10.1109/ROBOT.2005.1570398&rft_dat=%3Cieee_6IE%3E1570398%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c766eea3023009109dc449bc18ca3200a5daa81b2fcea7ce2e9227dea86449ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1570398&rfr_iscdi=true