Loading…
Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing
Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1952 |
container_issue | |
container_start_page | 1947 |
container_title | |
container_volume | |
creator | Greenfield, A. Rizzi, A.A. Choset, H. |
description | Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward. |
doi_str_mv | 10.1109/ROBOT.2005.1570398 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1570398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1570398</ieee_id><sourcerecordid>1570398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c766eea3023009109dc449bc18ca3200a5daa81b2fcea7ce2e9227dea86449ec3</originalsourceid><addsrcrecordid>eNotkM1Kw0AUhQd_wFr7ArqZF0i9M5NkZpZttSoUCrVCN1JuJrf1SpKWJCp5eyN2dc7i8MF3hLhVMFYK_P1qOV2uxxogGavEgvHuTAx0Ym0Ezm7OxTVYB8Z5FW8uxEBBAlFstb8So6b5BADlUw-pHYj3h67CkoOclBnvv7hlaiRXcl5zaPlQYSFXvOc8yg55J1-7pqWykT_cfsjJ8VhwwL-VbA9yVnCPqPbym1FOawx9vxGXOywaGp1yKN7mj-vZc7RYPr3MJouIlU3aKNg0JUID2gD43i8PceyzoFxA00tikiM6leldILSBNHmtbU7o0n5HwQzF3T-XiWh7rLnEutuenjG_OfVW-w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Greenfield, A. ; Rizzi, A.A. ; Choset, H.</creator><creatorcontrib>Greenfield, A. ; Rizzi, A.A. ; Choset, H.</creatorcontrib><description>Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 078038914X</identifier><identifier>ISBN: 9780780389144</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.2005.1570398</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Climbing ; Friction ; Gravity ; Hyper-redundant robot ; Motion analysis ; Partitioning algorithms ; Pressing ; Rigid-Body Dynamics ; Robotics and automation ; Robots ; Robustness ; Stability</subject><ispartof>Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, p.1947-1952</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1570398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1570398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Greenfield, A.</creatorcontrib><creatorcontrib>Rizzi, A.A.</creatorcontrib><creatorcontrib>Choset, H.</creatorcontrib><title>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</title><title>Proceedings of the 2005 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.</description><subject>Algorithm design and analysis</subject><subject>Climbing</subject><subject>Friction</subject><subject>Gravity</subject><subject>Hyper-redundant robot</subject><subject>Motion analysis</subject><subject>Partitioning algorithms</subject><subject>Pressing</subject><subject>Rigid-Body Dynamics</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Robustness</subject><subject>Stability</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>078038914X</isbn><isbn>9780780389144</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AUhQd_wFr7ArqZF0i9M5NkZpZttSoUCrVCN1JuJrf1SpKWJCp5eyN2dc7i8MF3hLhVMFYK_P1qOV2uxxogGavEgvHuTAx0Ym0Ezm7OxTVYB8Z5FW8uxEBBAlFstb8So6b5BADlUw-pHYj3h67CkoOclBnvv7hlaiRXcl5zaPlQYSFXvOc8yg55J1-7pqWykT_cfsjJ8VhwwL-VbA9yVnCPqPbym1FOawx9vxGXOywaGp1yKN7mj-vZc7RYPr3MJouIlU3aKNg0JUID2gD43i8PceyzoFxA00tikiM6leldILSBNHmtbU7o0n5HwQzF3T-XiWh7rLnEutuenjG_OfVW-w</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Greenfield, A.</creator><creator>Rizzi, A.A.</creator><creator>Choset, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</title><author>Greenfield, A. ; Rizzi, A.A. ; Choset, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c766eea3023009109dc449bc18ca3200a5daa81b2fcea7ce2e9227dea86449ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Climbing</topic><topic>Friction</topic><topic>Gravity</topic><topic>Hyper-redundant robot</topic><topic>Motion analysis</topic><topic>Partitioning algorithms</topic><topic>Pressing</topic><topic>Rigid-Body Dynamics</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Robustness</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Greenfield, A.</creatorcontrib><creatorcontrib>Rizzi, A.A.</creatorcontrib><creatorcontrib>Choset, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Greenfield, A.</au><au>Rizzi, A.A.</au><au>Choset, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing</atitle><btitle>Proceedings of the 2005 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2005</date><risdate>2005</risdate><spage>1947</spage><epage>1952</epage><pages>1947-1952</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>078038914X</isbn><isbn>9780780389144</isbn><abstract>Constructing climbing behaviors for hyper-redundant robots that account for the system dynamics requires a model of robot dynamics under contact and friction. One common model, rigid-body dynamics with coulomb friction, unfortunately is both an ambiguous and inconsistent set of dynamic axioms. This paper addresses the ambiguity problem by developing an algorithm which computes the set of joint torques such that all solutions are guaranteed to produce the desired system behavior. This algorithm is applied to a type of robot climbing which we denote climbing via bracing where a hyper-redundant robot stabilizes itself against gravity by pressing outward to induce friction. By bracing with a fraction of the robot, which we term a brace the remainder of the robot remains free to move upward and brace at a higher location. A sequence of braces thus moves the robot upward.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2005.1570398</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, p.1947-1952 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_1570398 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Climbing Friction Gravity Hyper-redundant robot Motion analysis Partitioning algorithms Pressing Rigid-Body Dynamics Robotics and automation Robots Robustness Stability |
title | Dynamic Ambiguities in Frictional Rigid-body Systems with Application to Climbing via Bracing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20Ambiguities%20in%20Frictional%20Rigid-body%20Systems%20with%20Application%20to%20Climbing%20via%20Bracing&rft.btitle=Proceedings%20of%20the%202005%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Greenfield,%20A.&rft.date=2005&rft.spage=1947&rft.epage=1952&rft.pages=1947-1952&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=078038914X&rft.isbn_list=9780780389144&rft_id=info:doi/10.1109/ROBOT.2005.1570398&rft_dat=%3Cieee_6IE%3E1570398%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c766eea3023009109dc449bc18ca3200a5daa81b2fcea7ce2e9227dea86449ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1570398&rfr_iscdi=true |