Loading…

Imposing Symmetry in Least Squares Support Vector Machines Regression

In this paper we show how to use relevant prior information by imposing symmetry conditions (odd or even) to the Least Squares Support Vector Machines regression formulation. This is done by adding a simple constraint to the LS-SVM model, which finally translates into a new kernel. This equivalent k...

Full description

Saved in:
Bibliographic Details
Main Authors: Espinoza, M., Suykens, J.A.K., De Moor, B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5721
container_issue
container_start_page 5716
container_title
container_volume
creator Espinoza, M.
Suykens, J.A.K.
De Moor, B.
description In this paper we show how to use relevant prior information by imposing symmetry conditions (odd or even) to the Least Squares Support Vector Machines regression formulation. This is done by adding a simple constraint to the LS-SVM model, which finally translates into a new kernel. This equivalent kernel embodies the prior information about symmetry, and therefore the dimension of the final dual system is the same as the unrestricted case. We show that using a regularization term and a soft constraint provides a general framework which contains the unrestricted LS-SVM and the symmetry-constrained LS-SVM as extreme cases. Imposing symmetry improves substantially the performance of the models, which can be seen in terms of generalization ability and in the reduction of model complexity. Practical examples of NARX models and time series prediction show satisfactory results.
doi_str_mv 10.1109/CDC.2005.1583074
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1583074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1583074</ieee_id><sourcerecordid>1583074</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1844caf8b637f67028e7b784b7dfd24356b5133b981dfcbf6b5fd8ebebed89903</originalsourceid><addsrcrecordid>eNotT0tLxDAYDKjguu5d8JI_0Pp9TfM6Sl11oSJY9bo0bbJG7MOke-i_t-AyA8PMwMAQcoOQIoK-Kx6KNAPgKXLFQOZnZKOlgoVMcyHxnKwANSZZhuKSXMX4DQAKhFiR7a4bh-j7A63mrrNTmKnvaWnrONHq91gHG2l1HMchTPTTNtMQ6EvdfPl-yd_sYamjH_prcuHqn2g3J12Tj8fte_GclK9Pu-K-TDxKPiWo8rypnTKCSSckZMpKI1VuZOvaLGdcGI6MGa2wdY1xi3WtsmZBq7QGtia3_7veWrsfg-_qMO9Pr9kfasBL3w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Imposing Symmetry in Least Squares Support Vector Machines Regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Espinoza, M. ; Suykens, J.A.K. ; De Moor, B.</creator><creatorcontrib>Espinoza, M. ; Suykens, J.A.K. ; De Moor, B.</creatorcontrib><description>In this paper we show how to use relevant prior information by imposing symmetry conditions (odd or even) to the Least Squares Support Vector Machines regression formulation. This is done by adding a simple constraint to the LS-SVM model, which finally translates into a new kernel. This equivalent kernel embodies the prior information about symmetry, and therefore the dimension of the final dual system is the same as the unrestricted case. We show that using a regularization term and a soft constraint provides a general framework which contains the unrestricted LS-SVM and the symmetry-constrained LS-SVM as extreme cases. Imposing symmetry improves substantially the performance of the models, which can be seen in terms of generalization ability and in the reduction of model complexity. Practical examples of NARX models and time series prediction show satisfactory results.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780395671</identifier><identifier>ISBN: 0780395670</identifier><identifier>DOI: 10.1109/CDC.2005.1583074</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Kernel ; Least squares approximation ; Least squares methods ; Linear systems ; Nonlinear systems ; Power system modeling ; Predictive models ; Quadratic programming ; Support vector machines</subject><ispartof>Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.5716-5721</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1583074$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1583074$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Espinoza, M.</creatorcontrib><creatorcontrib>Suykens, J.A.K.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><title>Imposing Symmetry in Least Squares Support Vector Machines Regression</title><title>Proceedings of the 44th IEEE Conference on Decision and Control</title><addtitle>CDC</addtitle><description>In this paper we show how to use relevant prior information by imposing symmetry conditions (odd or even) to the Least Squares Support Vector Machines regression formulation. This is done by adding a simple constraint to the LS-SVM model, which finally translates into a new kernel. This equivalent kernel embodies the prior information about symmetry, and therefore the dimension of the final dual system is the same as the unrestricted case. We show that using a regularization term and a soft constraint provides a general framework which contains the unrestricted LS-SVM and the symmetry-constrained LS-SVM as extreme cases. Imposing symmetry improves substantially the performance of the models, which can be seen in terms of generalization ability and in the reduction of model complexity. Practical examples of NARX models and time series prediction show satisfactory results.</description><subject>Cost function</subject><subject>Kernel</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>Power system modeling</subject><subject>Predictive models</subject><subject>Quadratic programming</subject><subject>Support vector machines</subject><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotT0tLxDAYDKjguu5d8JI_0Pp9TfM6Sl11oSJY9bo0bbJG7MOke-i_t-AyA8PMwMAQcoOQIoK-Kx6KNAPgKXLFQOZnZKOlgoVMcyHxnKwANSZZhuKSXMX4DQAKhFiR7a4bh-j7A63mrrNTmKnvaWnrONHq91gHG2l1HMchTPTTNtMQ6EvdfPl-yd_sYamjH_prcuHqn2g3J12Tj8fte_GclK9Pu-K-TDxKPiWo8rypnTKCSSckZMpKI1VuZOvaLGdcGI6MGa2wdY1xi3WtsmZBq7QGtia3_7veWrsfg-_qMO9Pr9kfasBL3w</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Espinoza, M.</creator><creator>Suykens, J.A.K.</creator><creator>De Moor, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2005</creationdate><title>Imposing Symmetry in Least Squares Support Vector Machines Regression</title><author>Espinoza, M. ; Suykens, J.A.K. ; De Moor, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1844caf8b637f67028e7b784b7dfd24356b5133b981dfcbf6b5fd8ebebed89903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cost function</topic><topic>Kernel</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>Power system modeling</topic><topic>Predictive models</topic><topic>Quadratic programming</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Espinoza, M.</creatorcontrib><creatorcontrib>Suykens, J.A.K.</creatorcontrib><creatorcontrib>De Moor, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Espinoza, M.</au><au>Suykens, J.A.K.</au><au>De Moor, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Imposing Symmetry in Least Squares Support Vector Machines Regression</atitle><btitle>Proceedings of the 44th IEEE Conference on Decision and Control</btitle><stitle>CDC</stitle><date>2005</date><risdate>2005</risdate><spage>5716</spage><epage>5721</epage><pages>5716-5721</pages><issn>0191-2216</issn><isbn>9780780395671</isbn><isbn>0780395670</isbn><abstract>In this paper we show how to use relevant prior information by imposing symmetry conditions (odd or even) to the Least Squares Support Vector Machines regression formulation. This is done by adding a simple constraint to the LS-SVM model, which finally translates into a new kernel. This equivalent kernel embodies the prior information about symmetry, and therefore the dimension of the final dual system is the same as the unrestricted case. We show that using a regularization term and a soft constraint provides a general framework which contains the unrestricted LS-SVM and the symmetry-constrained LS-SVM as extreme cases. Imposing symmetry improves substantially the performance of the models, which can be seen in terms of generalization ability and in the reduction of model complexity. Practical examples of NARX models and time series prediction show satisfactory results.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2005.1583074</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 44th IEEE Conference on Decision and Control, 2005, p.5716-5721
issn 0191-2216
language eng
recordid cdi_ieee_primary_1583074
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cost function
Kernel
Least squares approximation
Least squares methods
Linear systems
Nonlinear systems
Power system modeling
Predictive models
Quadratic programming
Support vector machines
title Imposing Symmetry in Least Squares Support Vector Machines Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Imposing%20Symmetry%20in%20Least%20Squares%20Support%20Vector%20Machines%20Regression&rft.btitle=Proceedings%20of%20the%2044th%20IEEE%20Conference%20on%20Decision%20and%20Control&rft.au=Espinoza,%20M.&rft.date=2005&rft.spage=5716&rft.epage=5721&rft.pages=5716-5721&rft.issn=0191-2216&rft.isbn=9780780395671&rft.isbn_list=0780395670&rft_id=info:doi/10.1109/CDC.2005.1583074&rft_dat=%3Cieee_6IE%3E1583074%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1844caf8b637f67028e7b784b7dfd24356b5133b981dfcbf6b5fd8ebebed89903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1583074&rfr_iscdi=true