Loading…
Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source
We propose to use a supercontinuum (SC) for a low-phase-noise multiwavelength light source in wavelength-division-multiplexing (WDM) millimeter-waveband (mm-waveband) radio-on-fiber (RoF) systems. We demonstrate the generation of low-phase-noise 60-GHz-band RoF signal. We also demonstrate the genera...
Saved in:
Published in: | Journal of lightwave technology 2006-01, Vol.24 (1), p.404-410 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose to use a supercontinuum (SC) for a low-phase-noise multiwavelength light source in wavelength-division-multiplexing (WDM) millimeter-waveband (mm-waveband) radio-on-fiber (RoF) systems. We demonstrate the generation of low-phase-noise 60-GHz-band RoF signal. We also demonstrate the generation of two-channel WDM 60-GHz-band RoF signals and the transmission of the signals over a 25-km standard single-mode fiber (SMF) using photonic upconversion. The single multiwavelength light source can be shared with a number of users and simplifies the system configuration, which would allow the realization of high-reliability as well as low-cost RoF systems. Finally, the RoF network capacity with a single SC light source is estimated to be over 10 000 channels when the spectrum of the SC light source is fully utilized. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2005.859854 |