Loading…

MPICH-V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes

Global Computing platforms, large scale clusters and future TeraGRID systems gather thousands of nodes for computing parallel scientific applications. At this scale, node failures or disconnections are frequent events. This Volatility reduces the MTBF of the whole system in the range of hours or min...

Full description

Saved in:
Bibliographic Details
Main Authors: Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Herault, T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global Computing platforms, large scale clusters and future TeraGRID systems gather thousands of nodes for computing parallel scientific applications. At this scale, node failures or disconnections are frequent events. This Volatility reduces the MTBF of the whole system in the range of hours or minutes. We present MPICH-V, an automatic Volatility tolerant MPI environment based on uncoordinated checkpoint/roll-back and distributed message logging. MPICH-V architecture relies on Channel Memories, Checkpoint servers and theoretically proven protocols to execute existing or new, SPMD and Master-Worker MPI applications on volatile nodes. To evaluate its capabilities, we run MPICH-V within a framework for which the number of nodes, Channels Memories and Checkpoint Servers can be completely configured as well as the node Volatility. We present a detailed performance evaluation of every component of MPICH-V and its global performance for non-trivial parallel applications. Experimental results demonstrate good scalability and high tolerance to node volatility.
ISSN:1063-9535
DOI:10.1109/SC.2002.10048