Loading…
A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites
The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Desai, V. Khatri, P. Done, A. Fridman, A. Tainsky, M. Draghici, S. |
description | The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3. |
doi_str_mv | 10.1109/CIBCB.2005.1594918 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1594918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1594918</ieee_id><sourcerecordid>1594918</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-39ba1a50548297da72266e1b677fce9df5f69ed5484e05872153a51b22eeb4803</originalsourceid><addsrcrecordid>eNotUG1LwzAQDoigzP4B_ZI_0JqkTdN8XIvTwVBh_T7S9KInW1uTKPjvjbjj4Hhe7oE7Qm45Kzhn-r7btl1bCMZkwaWuNG8uSKZVw1KXumyUvCJZCB8sVcJa8GsCa_o8f8ORtjjj5GZ_MhFtoD3Y9wk_v4BuZk9fPYxoI05vtJunESPOU75fwKJDS3tvpmA9Ln803Rgb00qLyZf8e4wQbsilM8cA2XmuSL956LunfPfyuO3Wuxw1i3mpB8ONZLJqhFajUULUNfChVspZ0KOTrtYwJrkCJhsluCyN5IMQAEOVblyRu_9YBIDD4vFk_M_h_IvyF7GpVYY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Desai, V. ; Khatri, P. ; Done, A. ; Fridman, A. ; Tainsky, M. ; Draghici, S.</creator><creatorcontrib>Desai, V. ; Khatri, P. ; Done, A. ; Fridman, A. ; Tainsky, M. ; Draghici, S.</creatorcontrib><description>The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.</description><identifier>ISBN: 9780780393875</identifier><identifier>ISBN: 0780393872</identifier><identifier>DOI: 10.1109/CIBCB.2005.1594918</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological processes ; Biotechnology ; Computer science ; DNA ; Genomics ; In vitro ; In vivo ; Stochastic processes</subject><ispartof>2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2005, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1594918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1594918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Desai, V.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Done, A.</creatorcontrib><creatorcontrib>Fridman, A.</creatorcontrib><creatorcontrib>Tainsky, M.</creatorcontrib><creatorcontrib>Draghici, S.</creatorcontrib><title>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</title><title>2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology</title><addtitle>CIBCB</addtitle><description>The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.</description><subject>Bioinformatics</subject><subject>Biological processes</subject><subject>Biotechnology</subject><subject>Computer science</subject><subject>DNA</subject><subject>Genomics</subject><subject>In vitro</subject><subject>In vivo</subject><subject>Stochastic processes</subject><isbn>9780780393875</isbn><isbn>0780393872</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUG1LwzAQDoigzP4B_ZI_0JqkTdN8XIvTwVBh_T7S9KInW1uTKPjvjbjj4Hhe7oE7Qm45Kzhn-r7btl1bCMZkwaWuNG8uSKZVw1KXumyUvCJZCB8sVcJa8GsCa_o8f8ORtjjj5GZ_MhFtoD3Y9wk_v4BuZk9fPYxoI05vtJunESPOU75fwKJDS3tvpmA9Ln803Rgb00qLyZf8e4wQbsilM8cA2XmuSL956LunfPfyuO3Wuxw1i3mpB8ONZLJqhFajUULUNfChVspZ0KOTrtYwJrkCJhsluCyN5IMQAEOVblyRu_9YBIDD4vFk_M_h_IvyF7GpVYY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Desai, V.</creator><creator>Khatri, P.</creator><creator>Done, A.</creator><creator>Fridman, A.</creator><creator>Tainsky, M.</creator><creator>Draghici, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</title><author>Desai, V. ; Khatri, P. ; Done, A. ; Fridman, A. ; Tainsky, M. ; Draghici, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-39ba1a50548297da72266e1b677fce9df5f69ed5484e05872153a51b22eeb4803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bioinformatics</topic><topic>Biological processes</topic><topic>Biotechnology</topic><topic>Computer science</topic><topic>DNA</topic><topic>Genomics</topic><topic>In vitro</topic><topic>In vivo</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, V.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Done, A.</creatorcontrib><creatorcontrib>Fridman, A.</creatorcontrib><creatorcontrib>Tainsky, M.</creatorcontrib><creatorcontrib>Draghici, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Desai, V.</au><au>Khatri, P.</au><au>Done, A.</au><au>Fridman, A.</au><au>Tainsky, M.</au><au>Draghici, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</atitle><btitle>2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology</btitle><stitle>CIBCB</stitle><date>2005</date><risdate>2005</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9780780393875</isbn><isbn>0780393872</isbn><abstract>The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.</abstract><pub>IEEE</pub><doi>10.1109/CIBCB.2005.1594918</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780393875 |
ispartof | 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2005, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1594918 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bioinformatics Biological processes Biotechnology Computer science DNA Genomics In vitro In vivo Stochastic processes |
title | A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Bioinformatics%20Technique%20For%20Predicting%20Condition-Specific%20Transcription%20Factor%20Binding%20Sites&rft.btitle=2005%20IEEE%20Symposium%20on%20Computational%20Intelligence%20in%20Bioinformatics%20and%20Computational%20Biology&rft.au=Desai,%20V.&rft.date=2005&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9780780393875&rft.isbn_list=0780393872&rft_id=info:doi/10.1109/CIBCB.2005.1594918&rft_dat=%3Cieee_6IE%3E1594918%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-39ba1a50548297da72266e1b677fce9df5f69ed5484e05872153a51b22eeb4803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1594918&rfr_iscdi=true |