Loading…

A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites

The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand...

Full description

Saved in:
Bibliographic Details
Main Authors: Desai, V., Khatri, P., Done, A., Fridman, A., Tainsky, M., Draghici, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Desai, V.
Khatri, P.
Done, A.
Fridman, A.
Tainsky, M.
Draghici, S.
description The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.
doi_str_mv 10.1109/CIBCB.2005.1594918
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1594918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1594918</ieee_id><sourcerecordid>1594918</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-39ba1a50548297da72266e1b677fce9df5f69ed5484e05872153a51b22eeb4803</originalsourceid><addsrcrecordid>eNotUG1LwzAQDoigzP4B_ZI_0JqkTdN8XIvTwVBh_T7S9KInW1uTKPjvjbjj4Hhe7oE7Qm45Kzhn-r7btl1bCMZkwaWuNG8uSKZVw1KXumyUvCJZCB8sVcJa8GsCa_o8f8ORtjjj5GZ_MhFtoD3Y9wk_v4BuZk9fPYxoI05vtJunESPOU75fwKJDS3tvpmA9Ln803Rgb00qLyZf8e4wQbsilM8cA2XmuSL956LunfPfyuO3Wuxw1i3mpB8ONZLJqhFajUULUNfChVspZ0KOTrtYwJrkCJhsluCyN5IMQAEOVblyRu_9YBIDD4vFk_M_h_IvyF7GpVYY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Desai, V. ; Khatri, P. ; Done, A. ; Fridman, A. ; Tainsky, M. ; Draghici, S.</creator><creatorcontrib>Desai, V. ; Khatri, P. ; Done, A. ; Fridman, A. ; Tainsky, M. ; Draghici, S.</creatorcontrib><description>The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.</description><identifier>ISBN: 9780780393875</identifier><identifier>ISBN: 0780393872</identifier><identifier>DOI: 10.1109/CIBCB.2005.1594918</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Biological processes ; Biotechnology ; Computer science ; DNA ; Genomics ; In vitro ; In vivo ; Stochastic processes</subject><ispartof>2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2005, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1594918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1594918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Desai, V.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Done, A.</creatorcontrib><creatorcontrib>Fridman, A.</creatorcontrib><creatorcontrib>Tainsky, M.</creatorcontrib><creatorcontrib>Draghici, S.</creatorcontrib><title>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</title><title>2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology</title><addtitle>CIBCB</addtitle><description>The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.</description><subject>Bioinformatics</subject><subject>Biological processes</subject><subject>Biotechnology</subject><subject>Computer science</subject><subject>DNA</subject><subject>Genomics</subject><subject>In vitro</subject><subject>In vivo</subject><subject>Stochastic processes</subject><isbn>9780780393875</isbn><isbn>0780393872</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUG1LwzAQDoigzP4B_ZI_0JqkTdN8XIvTwVBh_T7S9KInW1uTKPjvjbjj4Hhe7oE7Qm45Kzhn-r7btl1bCMZkwaWuNG8uSKZVw1KXumyUvCJZCB8sVcJa8GsCa_o8f8ORtjjj5GZ_MhFtoD3Y9wk_v4BuZk9fPYxoI05vtJunESPOU75fwKJDS3tvpmA9Ln803Rgb00qLyZf8e4wQbsilM8cA2XmuSL956LunfPfyuO3Wuxw1i3mpB8ONZLJqhFajUULUNfChVspZ0KOTrtYwJrkCJhsluCyN5IMQAEOVblyRu_9YBIDD4vFk_M_h_IvyF7GpVYY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Desai, V.</creator><creator>Khatri, P.</creator><creator>Done, A.</creator><creator>Fridman, A.</creator><creator>Tainsky, M.</creator><creator>Draghici, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</title><author>Desai, V. ; Khatri, P. ; Done, A. ; Fridman, A. ; Tainsky, M. ; Draghici, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-39ba1a50548297da72266e1b677fce9df5f69ed5484e05872153a51b22eeb4803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bioinformatics</topic><topic>Biological processes</topic><topic>Biotechnology</topic><topic>Computer science</topic><topic>DNA</topic><topic>Genomics</topic><topic>In vitro</topic><topic>In vivo</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, V.</creatorcontrib><creatorcontrib>Khatri, P.</creatorcontrib><creatorcontrib>Done, A.</creatorcontrib><creatorcontrib>Fridman, A.</creatorcontrib><creatorcontrib>Tainsky, M.</creatorcontrib><creatorcontrib>Draghici, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Desai, V.</au><au>Khatri, P.</au><au>Done, A.</au><au>Fridman, A.</au><au>Tainsky, M.</au><au>Draghici, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites</atitle><btitle>2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology</btitle><stitle>CIBCB</stitle><date>2005</date><risdate>2005</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9780780393875</isbn><isbn>0780393872</isbn><abstract>The advent of high throughput sequencing and DNA microarray technologies along with the advances in bioinformatics have revolutionized biological research in the recent years. However, the precise mechanisms that control gene expression are largely unknown despite the numerous efforts to understand them. We describe a bioinformatics technique that can potentially identify condition-specific transcription factor binding sites. We applied our technique to cellular immortalization data set. Our analysis revealed similarities in upstream regions of CXCL gene family that explain condition-specific differential expression of genes CXCL1 and CXCL2, versus gene CXCL3.</abstract><pub>IEEE</pub><doi>10.1109/CIBCB.2005.1594918</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780393875
ispartof 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2005, p.1-6
issn
language eng
recordid cdi_ieee_primary_1594918
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Biological processes
Biotechnology
Computer science
DNA
Genomics
In vitro
In vivo
Stochastic processes
title A Novel Bioinformatics Technique For Predicting Condition-Specific Transcription Factor Binding Sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Bioinformatics%20Technique%20For%20Predicting%20Condition-Specific%20Transcription%20Factor%20Binding%20Sites&rft.btitle=2005%20IEEE%20Symposium%20on%20Computational%20Intelligence%20in%20Bioinformatics%20and%20Computational%20Biology&rft.au=Desai,%20V.&rft.date=2005&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9780780393875&rft.isbn_list=0780393872&rft_id=info:doi/10.1109/CIBCB.2005.1594918&rft_dat=%3Cieee_6IE%3E1594918%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-39ba1a50548297da72266e1b677fce9df5f69ed5484e05872153a51b22eeb4803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1594918&rfr_iscdi=true