Loading…
The second generation HRRT - a multi-centre scanner performance investigation
The high resolution research tomograph (HRRT) is one of the most complex existing positron emission tomographs: it is the only human size scanner capable of decoding the depth of the /spl gamma/-ray interaction in the crystal, using a lutetium LSO/LYSO phoswich detector arrangement. In this study we...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high resolution research tomograph (HRRT) is one of the most complex existing positron emission tomographs: it is the only human size scanner capable of decoding the depth of the /spl gamma/-ray interaction in the crystal, using a lutetium LSO/LYSO phoswich detector arrangement. In this study we determined basic scanner hardware characteristics, such as scanner data acquisition stability, and their variability across eleven centres. In addition a subset of the NEMA NU-2001 standards measurements was performed. We found (i) significant variability in the DOI decoding results between centres, (ii) a trend toward an increasing number of detected true coincident events as a function of elapsed time from scanner calibration likely due to a shifting energy spectrum, (iii) a count-rate dependent layer identification, (iv) scatter fraction ranging from /spl sim/ 42% to 54% where the variability was partly related to the shifting of the energy spectrum, (v) sensitivity ranging from /spl sim/5.5% to 6.5% across centres, (vi) resolution of /spl sim/(2.5 mm)/sup 3/, fairly consistent across centres, (vii) image quality which is very comparable to other scanners. |
---|---|
ISSN: | 1082-3654 2577-0829 |
DOI: | 10.1109/NSSMIC.2005.1596770 |