Loading…
A MEMS resonant strain sensor with 33 nano-strain resolution in a 10 kHz bandwidth
In this paper the authors demonstrate a high performance strain measurement system that consists of a polysilicon double ended tuning fork (DETF) resonant sensor and surface mount electronics to measure its output. This system achieves a resolution of 33 nano-strain (nepsiv) in a bandwidth of 10 kHz...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the authors demonstrate a high performance strain measurement system that consists of a polysilicon double ended tuning fork (DETF) resonant sensor and surface mount electronics to measure its output. This system achieves a resolution of 33 nano-strain (nepsiv) in a bandwidth of 10 kHz, and has a noise floor of 60 pico-strain per root hertz (pepsiv/radicHz) up to 1kHz. The 60 pepsiv/radicHz noise floor is equivalent to a displacement resolution of 12 femto-meters per root hertz (fm/radicHz). To the best of the author's knowledge the smallest reported displacement resolution using surface micromachining is 16 fm/radicHz (Geen et al., 2002) |
---|---|
ISSN: | 1930-0395 2168-9229 |
DOI: | 10.1109/ICSENS.2005.1597857 |