Loading…
Comparison of SVM and LS-SVM for Regression
Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113 |
---|---|
cites | |
container_end_page | 283 |
container_issue | |
container_start_page | 279 |
container_title | |
container_volume | 1 |
creator | Haifeng Wang Dejin Hu |
description | Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM |
doi_str_mv | 10.1109/ICNNB.2005.1614615 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1614615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1614615</ieee_id><sourcerecordid>1614615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113</originalsourceid><addsrcrecordid>eNotj09LAzEUxAMiVOp-gXrJXXbNS_LSvqMu_imsFax6LckmkRW7KYkXv70r7TDwm9Mww9gCRAMg6GbdbjZ3jRQCGzCgDeAZq2i5EpMVaSnVjFWlfIlJinCpVxfsuk37g81DSSNPkW8_nrkdPe-29X-MKfPX8JlDKUMaL9l5tN8lVCfO2fvD_Vv7VHcvj-v2tqt7KfVPTd75KCgiOqNxooskvUPnjcAQe9AEAhQgkFTRBuwVktHW6GmpAlBzdnXsHUIIu0Me9jb_7k6X1B84aT7K</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of SVM and LS-SVM for Regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haifeng Wang ; Dejin Hu</creator><creatorcontrib>Haifeng Wang ; Dejin Hu</creatorcontrib><description>Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM</description><identifier>ISBN: 9780780394223</identifier><identifier>ISBN: 0780394224</identifier><identifier>DOI: 10.1109/ICNNB.2005.1614615</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Equations ; Lagrangian functions ; Least squares approximation ; Least squares methods ; Linear systems ; Power engineering ; Support vector machine classification ; Support vector machines ; Testing</subject><ispartof>2005 International Conference on Neural Networks and Brain, 2005, Vol.1, p.279-283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1614615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1614615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haifeng Wang</creatorcontrib><creatorcontrib>Dejin Hu</creatorcontrib><title>Comparison of SVM and LS-SVM for Regression</title><title>2005 International Conference on Neural Networks and Brain</title><addtitle>ICNNB</addtitle><description>Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM</description><subject>Constraint optimization</subject><subject>Equations</subject><subject>Lagrangian functions</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Linear systems</subject><subject>Power engineering</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><isbn>9780780394223</isbn><isbn>0780394224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09LAzEUxAMiVOp-gXrJXXbNS_LSvqMu_imsFax6LckmkRW7KYkXv70r7TDwm9Mww9gCRAMg6GbdbjZ3jRQCGzCgDeAZq2i5EpMVaSnVjFWlfIlJinCpVxfsuk37g81DSSNPkW8_nrkdPe-29X-MKfPX8JlDKUMaL9l5tN8lVCfO2fvD_Vv7VHcvj-v2tqt7KfVPTd75KCgiOqNxooskvUPnjcAQe9AEAhQgkFTRBuwVktHW6GmpAlBzdnXsHUIIu0Me9jb_7k6X1B84aT7K</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Haifeng Wang</creator><creator>Dejin Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Comparison of SVM and LS-SVM for Regression</title><author>Haifeng Wang ; Dejin Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Constraint optimization</topic><topic>Equations</topic><topic>Lagrangian functions</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Linear systems</topic><topic>Power engineering</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Haifeng Wang</creatorcontrib><creatorcontrib>Dejin Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haifeng Wang</au><au>Dejin Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of SVM and LS-SVM for Regression</atitle><btitle>2005 International Conference on Neural Networks and Brain</btitle><stitle>ICNNB</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>279</spage><epage>283</epage><pages>279-283</pages><isbn>9780780394223</isbn><isbn>0780394224</isbn><abstract>Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM</abstract><pub>IEEE</pub><doi>10.1109/ICNNB.2005.1614615</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780394223 |
ispartof | 2005 International Conference on Neural Networks and Brain, 2005, Vol.1, p.279-283 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1614615 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Constraint optimization Equations Lagrangian functions Least squares approximation Least squares methods Linear systems Power engineering Support vector machine classification Support vector machines Testing |
title | Comparison of SVM and LS-SVM for Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20SVM%20and%20LS-SVM%20for%20Regression&rft.btitle=2005%20International%20Conference%20on%20Neural%20Networks%20and%20Brain&rft.au=Haifeng%20Wang&rft.date=2005&rft.volume=1&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.isbn=9780780394223&rft.isbn_list=0780394224&rft_id=info:doi/10.1109/ICNNB.2005.1614615&rft_dat=%3Cieee_6IE%3E1614615%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1614615&rfr_iscdi=true |