Loading…

Comparison of SVM and LS-SVM for Regression

Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS...

Full description

Saved in:
Bibliographic Details
Main Authors: Haifeng Wang, Dejin Hu
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113
cites
container_end_page 283
container_issue
container_start_page 279
container_title
container_volume 1
creator Haifeng Wang
Dejin Hu
description Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM
doi_str_mv 10.1109/ICNNB.2005.1614615
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1614615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1614615</ieee_id><sourcerecordid>1614615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113</originalsourceid><addsrcrecordid>eNotj09LAzEUxAMiVOp-gXrJXXbNS_LSvqMu_imsFax6LckmkRW7KYkXv70r7TDwm9Mww9gCRAMg6GbdbjZ3jRQCGzCgDeAZq2i5EpMVaSnVjFWlfIlJinCpVxfsuk37g81DSSNPkW8_nrkdPe-29X-MKfPX8JlDKUMaL9l5tN8lVCfO2fvD_Vv7VHcvj-v2tqt7KfVPTd75KCgiOqNxooskvUPnjcAQe9AEAhQgkFTRBuwVktHW6GmpAlBzdnXsHUIIu0Me9jb_7k6X1B84aT7K</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of SVM and LS-SVM for Regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haifeng Wang ; Dejin Hu</creator><creatorcontrib>Haifeng Wang ; Dejin Hu</creatorcontrib><description>Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM</description><identifier>ISBN: 9780780394223</identifier><identifier>ISBN: 0780394224</identifier><identifier>DOI: 10.1109/ICNNB.2005.1614615</identifier><language>eng</language><publisher>IEEE</publisher><subject>Constraint optimization ; Equations ; Lagrangian functions ; Least squares approximation ; Least squares methods ; Linear systems ; Power engineering ; Support vector machine classification ; Support vector machines ; Testing</subject><ispartof>2005 International Conference on Neural Networks and Brain, 2005, Vol.1, p.279-283</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1614615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1614615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haifeng Wang</creatorcontrib><creatorcontrib>Dejin Hu</creatorcontrib><title>Comparison of SVM and LS-SVM for Regression</title><title>2005 International Conference on Neural Networks and Brain</title><addtitle>ICNNB</addtitle><description>Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM</description><subject>Constraint optimization</subject><subject>Equations</subject><subject>Lagrangian functions</subject><subject>Least squares approximation</subject><subject>Least squares methods</subject><subject>Linear systems</subject><subject>Power engineering</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Testing</subject><isbn>9780780394223</isbn><isbn>0780394224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj09LAzEUxAMiVOp-gXrJXXbNS_LSvqMu_imsFax6LckmkRW7KYkXv70r7TDwm9Mww9gCRAMg6GbdbjZ3jRQCGzCgDeAZq2i5EpMVaSnVjFWlfIlJinCpVxfsuk37g81DSSNPkW8_nrkdPe-29X-MKfPX8JlDKUMaL9l5tN8lVCfO2fvD_Vv7VHcvj-v2tqt7KfVPTd75KCgiOqNxooskvUPnjcAQe9AEAhQgkFTRBuwVktHW6GmpAlBzdnXsHUIIu0Me9jb_7k6X1B84aT7K</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Haifeng Wang</creator><creator>Dejin Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>Comparison of SVM and LS-SVM for Regression</title><author>Haifeng Wang ; Dejin Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Constraint optimization</topic><topic>Equations</topic><topic>Lagrangian functions</topic><topic>Least squares approximation</topic><topic>Least squares methods</topic><topic>Linear systems</topic><topic>Power engineering</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Haifeng Wang</creatorcontrib><creatorcontrib>Dejin Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haifeng Wang</au><au>Dejin Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of SVM and LS-SVM for Regression</atitle><btitle>2005 International Conference on Neural Networks and Brain</btitle><stitle>ICNNB</stitle><date>2005</date><risdate>2005</risdate><volume>1</volume><spage>279</spage><epage>283</epage><pages>279-283</pages><isbn>9780780394223</isbn><isbn>0780394224</isbn><abstract>Support vector machines (SVM) has been widely used in classification and nonlinear function estimation. However, the major drawback of SVM is its higher computational burden for the constrained optimization programming. This disadvantage has been overcome by least squares support vector machines (LS-SVM), which solves linear equations instead of a quadratic programming problem. This paper compares LS-SVM with SVM for regression. According to the parallel test results, conclusions can be made that LS-SVM is preferred especially for large scale problem, because its solution procedure is high efficiency and after pruning both sparseness and performance of LS-SVM are comparable with those of SVM</abstract><pub>IEEE</pub><doi>10.1109/ICNNB.2005.1614615</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780394223
ispartof 2005 International Conference on Neural Networks and Brain, 2005, Vol.1, p.279-283
issn
language eng
recordid cdi_ieee_primary_1614615
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Constraint optimization
Equations
Lagrangian functions
Least squares approximation
Least squares methods
Linear systems
Power engineering
Support vector machine classification
Support vector machines
Testing
title Comparison of SVM and LS-SVM for Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20SVM%20and%20LS-SVM%20for%20Regression&rft.btitle=2005%20International%20Conference%20on%20Neural%20Networks%20and%20Brain&rft.au=Haifeng%20Wang&rft.date=2005&rft.volume=1&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.isbn=9780780394223&rft.isbn_list=0780394224&rft_id=info:doi/10.1109/ICNNB.2005.1614615&rft_dat=%3Cieee_6IE%3E1614615%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-9dbdf09f55b6459f5bf92db5bd605efc1491013151923fae5c35964a648073113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1614615&rfr_iscdi=true