Loading…
An improved genetic approach
In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, wh...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 644 |
container_issue | |
container_start_page | 641 |
container_title | |
container_volume | 2 |
creator | Liu Fuyan Chen Chouyong Lv Shaoyi |
description | In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising |
doi_str_mv | 10.1109/ICNNB.2005.1614714 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1614714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1614714</ieee_id><sourcerecordid>1614714</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ac78fc311bd34acc54f019bedfe8ca534984ba6ddbe48314022564e712aeb5e33</originalsourceid><addsrcrecordid>eNotj8tqwzAQRQWl0JL6B9ou_AN2NZqRJS0T00cgpJtkHfQYtwp5GDsU-vc1NJcLB-7iwBXiEWQNIN3Lsl2vF7WSUtfQABmgG1E4Y-VUdKQU3oliHPdyCjptyN6L5_mpzMd-OP9wKr_4xJccS99Pg4_fD-K284eRiytnYvv2umk_qtXn-7Kdr6oMRl8qH43tIgKEhORj1NRJcIFTxzZ6jeQsBd-kFJgsAkmldENsQHkOmhFn4unfm5l51w_56Iff3fUD_gHClTuf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved genetic approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu Fuyan ; Chen Chouyong ; Lv Shaoyi</creator><creatorcontrib>Liu Fuyan ; Chen Chouyong ; Lv Shaoyi</creatorcontrib><description>In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising</description><identifier>ISBN: 9780780394223</identifier><identifier>ISBN: 0780394224</identifier><identifier>DOI: 10.1109/ICNNB.2005.1614714</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological cells ; Clustering algorithms ; Genetic algorithms ; Genetic mutations ; Information management ; Robustness</subject><ispartof>2005 International Conference on Neural Networks and Brain, 2005, Vol.2, p.641-644</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1614714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1614714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu Fuyan</creatorcontrib><creatorcontrib>Chen Chouyong</creatorcontrib><creatorcontrib>Lv Shaoyi</creatorcontrib><title>An improved genetic approach</title><title>2005 International Conference on Neural Networks and Brain</title><addtitle>ICNNB</addtitle><description>In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising</description><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Clustering algorithms</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Information management</subject><subject>Robustness</subject><isbn>9780780394223</isbn><isbn>0780394224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tqwzAQRQWl0JL6B9ou_AN2NZqRJS0T00cgpJtkHfQYtwp5GDsU-vc1NJcLB-7iwBXiEWQNIN3Lsl2vF7WSUtfQABmgG1E4Y-VUdKQU3oliHPdyCjptyN6L5_mpzMd-OP9wKr_4xJccS99Pg4_fD-K284eRiytnYvv2umk_qtXn-7Kdr6oMRl8qH43tIgKEhORj1NRJcIFTxzZ6jeQsBd-kFJgsAkmldENsQHkOmhFn4unfm5l51w_56Iff3fUD_gHClTuf</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Liu Fuyan</creator><creator>Chen Chouyong</creator><creator>Lv Shaoyi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>An improved genetic approach</title><author>Liu Fuyan ; Chen Chouyong ; Lv Shaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ac78fc311bd34acc54f019bedfe8ca534984ba6ddbe48314022564e712aeb5e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Clustering algorithms</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Information management</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu Fuyan</creatorcontrib><creatorcontrib>Chen Chouyong</creatorcontrib><creatorcontrib>Lv Shaoyi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu Fuyan</au><au>Chen Chouyong</au><au>Lv Shaoyi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved genetic approach</atitle><btitle>2005 International Conference on Neural Networks and Brain</btitle><stitle>ICNNB</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>641</spage><epage>644</epage><pages>641-644</pages><isbn>9780780394223</isbn><isbn>0780394224</isbn><abstract>In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising</abstract><pub>IEEE</pub><doi>10.1109/ICNNB.2005.1614714</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780394223 |
ispartof | 2005 International Conference on Neural Networks and Brain, 2005, Vol.2, p.641-644 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1614714 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Biological cells Clustering algorithms Genetic algorithms Genetic mutations Information management Robustness |
title | An improved genetic approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20genetic%20approach&rft.btitle=2005%20International%20Conference%20on%20Neural%20Networks%20and%20Brain&rft.au=Liu%20Fuyan&rft.date=2005&rft.volume=2&rft.spage=641&rft.epage=644&rft.pages=641-644&rft.isbn=9780780394223&rft.isbn_list=0780394224&rft_id=info:doi/10.1109/ICNNB.2005.1614714&rft_dat=%3Cieee_6IE%3E1614714%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ac78fc311bd34acc54f019bedfe8ca534984ba6ddbe48314022564e712aeb5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1614714&rfr_iscdi=true |