Loading…

An improved genetic approach

In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, wh...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu Fuyan, Chen Chouyong, Lv Shaoyi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 644
container_issue
container_start_page 641
container_title
container_volume 2
creator Liu Fuyan
Chen Chouyong
Lv Shaoyi
description In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising
doi_str_mv 10.1109/ICNNB.2005.1614714
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1614714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1614714</ieee_id><sourcerecordid>1614714</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-ac78fc311bd34acc54f019bedfe8ca534984ba6ddbe48314022564e712aeb5e33</originalsourceid><addsrcrecordid>eNotj8tqwzAQRQWl0JL6B9ou_AN2NZqRJS0T00cgpJtkHfQYtwp5GDsU-vc1NJcLB-7iwBXiEWQNIN3Lsl2vF7WSUtfQABmgG1E4Y-VUdKQU3oliHPdyCjptyN6L5_mpzMd-OP9wKr_4xJccS99Pg4_fD-K284eRiytnYvv2umk_qtXn-7Kdr6oMRl8qH43tIgKEhORj1NRJcIFTxzZ6jeQsBd-kFJgsAkmldENsQHkOmhFn4unfm5l51w_56Iff3fUD_gHClTuf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved genetic approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liu Fuyan ; Chen Chouyong ; Lv Shaoyi</creator><creatorcontrib>Liu Fuyan ; Chen Chouyong ; Lv Shaoyi</creatorcontrib><description>In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising</description><identifier>ISBN: 9780780394223</identifier><identifier>ISBN: 0780394224</identifier><identifier>DOI: 10.1109/ICNNB.2005.1614714</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological cells ; Clustering algorithms ; Genetic algorithms ; Genetic mutations ; Information management ; Robustness</subject><ispartof>2005 International Conference on Neural Networks and Brain, 2005, Vol.2, p.641-644</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1614714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1614714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu Fuyan</creatorcontrib><creatorcontrib>Chen Chouyong</creatorcontrib><creatorcontrib>Lv Shaoyi</creatorcontrib><title>An improved genetic approach</title><title>2005 International Conference on Neural Networks and Brain</title><addtitle>ICNNB</addtitle><description>In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising</description><subject>Algorithm design and analysis</subject><subject>Biological cells</subject><subject>Clustering algorithms</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Information management</subject><subject>Robustness</subject><isbn>9780780394223</isbn><isbn>0780394224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tqwzAQRQWl0JL6B9ou_AN2NZqRJS0T00cgpJtkHfQYtwp5GDsU-vc1NJcLB-7iwBXiEWQNIN3Lsl2vF7WSUtfQABmgG1E4Y-VUdKQU3oliHPdyCjptyN6L5_mpzMd-OP9wKr_4xJccS99Pg4_fD-K284eRiytnYvv2umk_qtXn-7Kdr6oMRl8qH43tIgKEhORj1NRJcIFTxzZ6jeQsBd-kFJgsAkmldENsQHkOmhFn4unfm5l51w_56Iff3fUD_gHClTuf</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Liu Fuyan</creator><creator>Chen Chouyong</creator><creator>Lv Shaoyi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>An improved genetic approach</title><author>Liu Fuyan ; Chen Chouyong ; Lv Shaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-ac78fc311bd34acc54f019bedfe8ca534984ba6ddbe48314022564e712aeb5e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithm design and analysis</topic><topic>Biological cells</topic><topic>Clustering algorithms</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Information management</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu Fuyan</creatorcontrib><creatorcontrib>Chen Chouyong</creatorcontrib><creatorcontrib>Lv Shaoyi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu Fuyan</au><au>Chen Chouyong</au><au>Lv Shaoyi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved genetic approach</atitle><btitle>2005 International Conference on Neural Networks and Brain</btitle><stitle>ICNNB</stitle><date>2005</date><risdate>2005</risdate><volume>2</volume><spage>641</spage><epage>644</epage><pages>641-644</pages><isbn>9780780394223</isbn><isbn>0780394224</isbn><abstract>In this paper, we propose an improved genetic algorithm, which is based on an incremental genetic K-means algorithm. This approach combines an incremental genetic algorithm with K-means clustering. The main difference of our approach from the original lies in that we get rid of illegal solutions, which were allowed in the original, during whole evolution process of the genetic algorithm from initialization to its termination. The improvement in our approach is accomplished through changing the way of generating initial population in initialization phase and changing the method of dealing with empty clusters in mutation operation. Thus, the illegal solutions were eliminated from our algorithm and resulting more efficient time performance. Experimental results show that our improved genetic approach is promising</abstract><pub>IEEE</pub><doi>10.1109/ICNNB.2005.1614714</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780394223
ispartof 2005 International Conference on Neural Networks and Brain, 2005, Vol.2, p.641-644
issn
language eng
recordid cdi_ieee_primary_1614714
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological cells
Clustering algorithms
Genetic algorithms
Genetic mutations
Information management
Robustness
title An improved genetic approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20genetic%20approach&rft.btitle=2005%20International%20Conference%20on%20Neural%20Networks%20and%20Brain&rft.au=Liu%20Fuyan&rft.date=2005&rft.volume=2&rft.spage=641&rft.epage=644&rft.pages=641-644&rft.isbn=9780780394223&rft.isbn_list=0780394224&rft_id=info:doi/10.1109/ICNNB.2005.1614714&rft_dat=%3Cieee_6IE%3E1614714%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-ac78fc311bd34acc54f019bedfe8ca534984ba6ddbe48314022564e712aeb5e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1614714&rfr_iscdi=true