Loading…
A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix
Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or sma...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1339 |
container_issue | |
container_start_page | 1334 |
container_title | |
container_volume | 3 |
creator | Yiguang Liu Zhisheng You Liping Cao |
description | Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized |
doi_str_mv | 10.1109/ICNNB.2005.1614878 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1614878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1614878</ieee_id><sourcerecordid>1614878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d5be4f05ed1aca0a1fb729e4446fb56856b6c76b08e41717a1cabb628e9f7f433</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0hJFDpC8DFRzi02In_cixRC5VCkSicK8fZFEPiVI4D9B14aAztaKVvDzNzGIQuKZlSSrLbZb5a3U0TQviUCsqUVCdonElF4qUZS5L0DI37_p1EpRmXTJ2jnxnOO2dsD3gxOBNs53SDVzD4f4Svzn9ER7sbgnVbHN4AF9pvoQ_4et3qponfDZ7bLbhP3QyAtatw5yBmvId-17nqL3cwgAmdx12NNX6G2L_ety0Ebw1-1BHfF-i01k0P4yNH6HUxf8kfJsXT_TKfFRNLJQ-TipfAasKhotpoomldyiQDxpioSy4UF6UwUpREAaOSSk2NLkuRKMhqWbM0HaGrQ68FgM3O21b7_ea4WfoLLMBkqQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiguang Liu ; Zhisheng You ; Liping Cao</creator><creatorcontrib>Yiguang Liu ; Zhisheng You ; Liping Cao</creatorcontrib><description>Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized</description><identifier>ISBN: 9780780394223</identifier><identifier>ISBN: 0780394224</identifier><identifier>DOI: 10.1109/ICNNB.2005.1614878</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Concurrent computing ; Differential equations ; Eigenvalues and eigenfunctions ; Graphics ; Image analysis ; Matrix converters ; Neural networks ; Signal analysis ; Symmetric matrices</subject><ispartof>2005 International Conference on Neural Networks and Brain, 2005, Vol.3, p.1334-1339</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1614878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1614878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiguang Liu</creatorcontrib><creatorcontrib>Zhisheng You</creatorcontrib><creatorcontrib>Liping Cao</creatorcontrib><title>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</title><title>2005 International Conference on Neural Networks and Brain</title><addtitle>ICNNB</addtitle><description>Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized</description><subject>Computer networks</subject><subject>Concurrent computing</subject><subject>Differential equations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Graphics</subject><subject>Image analysis</subject><subject>Matrix converters</subject><subject>Neural networks</subject><subject>Signal analysis</subject><subject>Symmetric matrices</subject><isbn>9780780394223</isbn><isbn>0780394224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhC0hJFDpC8DFRzi02In_cixRC5VCkSicK8fZFEPiVI4D9B14aAztaKVvDzNzGIQuKZlSSrLbZb5a3U0TQviUCsqUVCdonElF4qUZS5L0DI37_p1EpRmXTJ2jnxnOO2dsD3gxOBNs53SDVzD4f4Svzn9ER7sbgnVbHN4AF9pvoQ_4et3qponfDZ7bLbhP3QyAtatw5yBmvId-17nqL3cwgAmdx12NNX6G2L_ety0Ebw1-1BHfF-i01k0P4yNH6HUxf8kfJsXT_TKfFRNLJQ-TipfAasKhotpoomldyiQDxpioSy4UF6UwUpREAaOSSk2NLkuRKMhqWbM0HaGrQ68FgM3O21b7_ea4WfoLLMBkqQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yiguang Liu</creator><creator>Zhisheng You</creator><creator>Liping Cao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</title><author>Yiguang Liu ; Zhisheng You ; Liping Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d5be4f05ed1aca0a1fb729e4446fb56856b6c76b08e41717a1cabb628e9f7f433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer networks</topic><topic>Concurrent computing</topic><topic>Differential equations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Graphics</topic><topic>Image analysis</topic><topic>Matrix converters</topic><topic>Neural networks</topic><topic>Signal analysis</topic><topic>Symmetric matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiguang Liu</creatorcontrib><creatorcontrib>Zhisheng You</creatorcontrib><creatorcontrib>Liping Cao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiguang Liu</au><au>Zhisheng You</au><au>Liping Cao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</atitle><btitle>2005 International Conference on Neural Networks and Brain</btitle><stitle>ICNNB</stitle><date>2005</date><risdate>2005</risdate><volume>3</volume><spage>1334</spage><epage>1339</epage><pages>1334-1339</pages><isbn>9780780394223</isbn><isbn>0780394224</isbn><abstract>Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized</abstract><pub>IEEE</pub><doi>10.1109/ICNNB.2005.1614878</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780394223 |
ispartof | 2005 International Conference on Neural Networks and Brain, 2005, Vol.3, p.1334-1339 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1614878 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer networks Concurrent computing Differential equations Eigenvalues and eigenfunctions Graphics Image analysis Matrix converters Neural networks Signal analysis Symmetric matrices |
title | A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Concise%20Functional%20Neural%20Network%20Computing%20the%20Largest%20(Smallest)%20Eigenvalue%20and%20one%20Corresponding%20Eigenvector%20of%20a%20Real%20Symmetric%20Matrix&rft.btitle=2005%20International%20Conference%20on%20Neural%20Networks%20and%20Brain&rft.au=Yiguang%20Liu&rft.date=2005&rft.volume=3&rft.spage=1334&rft.epage=1339&rft.pages=1334-1339&rft.isbn=9780780394223&rft.isbn_list=0780394224&rft_id=info:doi/10.1109/ICNNB.2005.1614878&rft_dat=%3Cieee_6IE%3E1614878%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d5be4f05ed1aca0a1fb729e4446fb56856b6c76b08e41717a1cabb628e9f7f433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1614878&rfr_iscdi=true |