Loading…

A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix

Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or sma...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiguang Liu, Zhisheng You, Liping Cao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1339
container_issue
container_start_page 1334
container_title
container_volume 3
creator Yiguang Liu
Zhisheng You
Liping Cao
description Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized
doi_str_mv 10.1109/ICNNB.2005.1614878
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1614878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1614878</ieee_id><sourcerecordid>1614878</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d5be4f05ed1aca0a1fb729e4446fb56856b6c76b08e41717a1cabb628e9f7f433</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0hJFDpC8DFRzi02In_cixRC5VCkSicK8fZFEPiVI4D9B14aAztaKVvDzNzGIQuKZlSSrLbZb5a3U0TQviUCsqUVCdonElF4qUZS5L0DI37_p1EpRmXTJ2jnxnOO2dsD3gxOBNs53SDVzD4f4Svzn9ER7sbgnVbHN4AF9pvoQ_4et3qponfDZ7bLbhP3QyAtatw5yBmvId-17nqL3cwgAmdx12NNX6G2L_ety0Ebw1-1BHfF-i01k0P4yNH6HUxf8kfJsXT_TKfFRNLJQ-TipfAasKhotpoomldyiQDxpioSy4UF6UwUpREAaOSSk2NLkuRKMhqWbM0HaGrQ68FgM3O21b7_ea4WfoLLMBkqQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yiguang Liu ; Zhisheng You ; Liping Cao</creator><creatorcontrib>Yiguang Liu ; Zhisheng You ; Liping Cao</creatorcontrib><description>Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized</description><identifier>ISBN: 9780780394223</identifier><identifier>ISBN: 0780394224</identifier><identifier>DOI: 10.1109/ICNNB.2005.1614878</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer networks ; Concurrent computing ; Differential equations ; Eigenvalues and eigenfunctions ; Graphics ; Image analysis ; Matrix converters ; Neural networks ; Signal analysis ; Symmetric matrices</subject><ispartof>2005 International Conference on Neural Networks and Brain, 2005, Vol.3, p.1334-1339</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1614878$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1614878$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yiguang Liu</creatorcontrib><creatorcontrib>Zhisheng You</creatorcontrib><creatorcontrib>Liping Cao</creatorcontrib><title>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</title><title>2005 International Conference on Neural Networks and Brain</title><addtitle>ICNNB</addtitle><description>Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized</description><subject>Computer networks</subject><subject>Concurrent computing</subject><subject>Differential equations</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Graphics</subject><subject>Image analysis</subject><subject>Matrix converters</subject><subject>Neural networks</subject><subject>Signal analysis</subject><subject>Symmetric matrices</subject><isbn>9780780394223</isbn><isbn>0780394224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1OwzAQhC0hJFDpC8DFRzi02In_cixRC5VCkSicK8fZFEPiVI4D9B14aAztaKVvDzNzGIQuKZlSSrLbZb5a3U0TQviUCsqUVCdonElF4qUZS5L0DI37_p1EpRmXTJ2jnxnOO2dsD3gxOBNs53SDVzD4f4Svzn9ER7sbgnVbHN4AF9pvoQ_4et3qponfDZ7bLbhP3QyAtatw5yBmvId-17nqL3cwgAmdx12NNX6G2L_ety0Ebw1-1BHfF-i01k0P4yNH6HUxf8kfJsXT_TKfFRNLJQ-TipfAasKhotpoomldyiQDxpioSy4UF6UwUpREAaOSSk2NLkuRKMhqWbM0HaGrQ68FgM3O21b7_ea4WfoLLMBkqQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yiguang Liu</creator><creator>Zhisheng You</creator><creator>Liping Cao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2005</creationdate><title>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</title><author>Yiguang Liu ; Zhisheng You ; Liping Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d5be4f05ed1aca0a1fb729e4446fb56856b6c76b08e41717a1cabb628e9f7f433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computer networks</topic><topic>Concurrent computing</topic><topic>Differential equations</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Graphics</topic><topic>Image analysis</topic><topic>Matrix converters</topic><topic>Neural networks</topic><topic>Signal analysis</topic><topic>Symmetric matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Yiguang Liu</creatorcontrib><creatorcontrib>Zhisheng You</creatorcontrib><creatorcontrib>Liping Cao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yiguang Liu</au><au>Zhisheng You</au><au>Liping Cao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix</atitle><btitle>2005 International Conference on Neural Networks and Brain</btitle><stitle>ICNNB</stitle><date>2005</date><risdate>2005</risdate><volume>3</volume><spage>1334</spage><epage>1339</epage><pages>1334-1339</pages><isbn>9780780394223</isbn><isbn>0780394224</isbn><abstract>Quick extraction of eigenpairs of a real symmetric matrix is very important in engineering. Using neural networks to complete this operation is in a parallel manner and can achieve high performance. So, this paper proposes a very concise functional neural network (FNN) to compute the largest (or smallest) eigenvalue and one its eigenvector. When the FNN is converted into a differential equation, the component analytic solution of this equation is obtained. Using the component solution, the convergence properties are fully analyzed. On the basis of this FNN, the method that can compute the largest (or smallest) eigenvalue and one its eigenvector whether the matrix is non-definite, positive definite or negative definite is designed. Finally, three examples show the validity of the method. Comparing with other neural networks designed for the same aim, the proposed FNN is very simple and concise, so it is very easy to be realized</abstract><pub>IEEE</pub><doi>10.1109/ICNNB.2005.1614878</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780394223
ispartof 2005 International Conference on Neural Networks and Brain, 2005, Vol.3, p.1334-1339
issn
language eng
recordid cdi_ieee_primary_1614878
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer networks
Concurrent computing
Differential equations
Eigenvalues and eigenfunctions
Graphics
Image analysis
Matrix converters
Neural networks
Signal analysis
Symmetric matrices
title A Concise Functional Neural Network Computing the Largest (Smallest) Eigenvalue and one Corresponding Eigenvector of a Real Symmetric Matrix
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Concise%20Functional%20Neural%20Network%20Computing%20the%20Largest%20(Smallest)%20Eigenvalue%20and%20one%20Corresponding%20Eigenvector%20of%20a%20Real%20Symmetric%20Matrix&rft.btitle=2005%20International%20Conference%20on%20Neural%20Networks%20and%20Brain&rft.au=Yiguang%20Liu&rft.date=2005&rft.volume=3&rft.spage=1334&rft.epage=1339&rft.pages=1334-1339&rft.isbn=9780780394223&rft.isbn_list=0780394224&rft_id=info:doi/10.1109/ICNNB.2005.1614878&rft_dat=%3Cieee_6IE%3E1614878%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d5be4f05ed1aca0a1fb729e4446fb56856b6c76b08e41717a1cabb628e9f7f433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1614878&rfr_iscdi=true