Loading…
Predictive control of integrating processes based on a nonparametric model
The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 843 vol.2 |
container_issue | |
container_start_page | 840 |
container_title | |
container_volume | |
creator | Svecko, R. Donlagic, D. Cucej, Z. Debevc, M. Tominc-Bele, L. |
description | The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.< > |
doi_str_mv | 10.1109/MELCON.1991.161972 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_161972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>161972</ieee_id><sourcerecordid>161972</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-f8cdc732f35456fce180921ab85173350f57c9f3e092a080058b81dc7b30a4a93</originalsourceid><addsrcrecordid>eNotj81KxDAUhQMiqOO8wKzyAq25TdMkSynjz1AdF7oe0vRmiLRNSYLg21sYz-bAB-eDQ8gOWAnA9MPbvmuP7yVoDSU0oGV1Re6YkrquGiHghmxT-mZragEg1C05fEQcvM3-B6kNc45hpMFRP2c8R5P9fKZLDBZTwkR7k3CgYaaGzmFeTDQT5ugtncKA4z25dmZMuP3vDfl62n-2L0V3fH5tH7vCg6xy4ZQdrOSV46IWjbMIiukKTK8ESM4Fc0Ja7Tiu1DDFmFC9gnXSc2Zqo_mG7C5ej4inJfrJxN_T5S3_A6mxS3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive control of integrating processes based on a nonparametric model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Svecko, R. ; Donlagic, D. ; Cucej, Z. ; Debevc, M. ; Tominc-Bele, L.</creator><creatorcontrib>Svecko, R. ; Donlagic, D. ; Cucej, Z. ; Debevc, M. ; Tominc-Bele, L.</creatorcontrib><description>The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.< ></description><identifier>ISBN: 0879426551</identifier><identifier>ISBN: 9780879426552</identifier><identifier>DOI: 10.1109/MELCON.1991.161972</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Convolution ; Nonlinear equations ; Optimal control ; Predictive control ; Predictive models ; Process control ; Programmable control ; Sampling methods ; Stress</subject><ispartof>[1991 Proceedings] 6th Mediterranean Electrotechnical Conference, 1991, p.840-843 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/161972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/161972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Svecko, R.</creatorcontrib><creatorcontrib>Donlagic, D.</creatorcontrib><creatorcontrib>Cucej, Z.</creatorcontrib><creatorcontrib>Debevc, M.</creatorcontrib><creatorcontrib>Tominc-Bele, L.</creatorcontrib><title>Predictive control of integrating processes based on a nonparametric model</title><title>[1991 Proceedings] 6th Mediterranean Electrotechnical Conference</title><addtitle>MELCON</addtitle><description>The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.< ></description><subject>Adaptive control</subject><subject>Convolution</subject><subject>Nonlinear equations</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Programmable control</subject><subject>Sampling methods</subject><subject>Stress</subject><isbn>0879426551</isbn><isbn>9780879426552</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KxDAUhQMiqOO8wKzyAq25TdMkSynjz1AdF7oe0vRmiLRNSYLg21sYz-bAB-eDQ8gOWAnA9MPbvmuP7yVoDSU0oGV1Re6YkrquGiHghmxT-mZragEg1C05fEQcvM3-B6kNc45hpMFRP2c8R5P9fKZLDBZTwkR7k3CgYaaGzmFeTDQT5ugtncKA4z25dmZMuP3vDfl62n-2L0V3fH5tH7vCg6xy4ZQdrOSV46IWjbMIiukKTK8ESM4Fc0Ja7Tiu1DDFmFC9gnXSc2Zqo_mG7C5ej4inJfrJxN_T5S3_A6mxS3Q</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Svecko, R.</creator><creator>Donlagic, D.</creator><creator>Cucej, Z.</creator><creator>Debevc, M.</creator><creator>Tominc-Bele, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Predictive control of integrating processes based on a nonparametric model</title><author>Svecko, R. ; Donlagic, D. ; Cucej, Z. ; Debevc, M. ; Tominc-Bele, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-f8cdc732f35456fce180921ab85173350f57c9f3e092a080058b81dc7b30a4a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Adaptive control</topic><topic>Convolution</topic><topic>Nonlinear equations</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Programmable control</topic><topic>Sampling methods</topic><topic>Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Svecko, R.</creatorcontrib><creatorcontrib>Donlagic, D.</creatorcontrib><creatorcontrib>Cucej, Z.</creatorcontrib><creatorcontrib>Debevc, M.</creatorcontrib><creatorcontrib>Tominc-Bele, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Svecko, R.</au><au>Donlagic, D.</au><au>Cucej, Z.</au><au>Debevc, M.</au><au>Tominc-Bele, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive control of integrating processes based on a nonparametric model</atitle><btitle>[1991 Proceedings] 6th Mediterranean Electrotechnical Conference</btitle><stitle>MELCON</stitle><date>1991</date><risdate>1991</risdate><spage>840</spage><epage>843 vol.2</epage><pages>840-843 vol.2</pages><isbn>0879426551</isbn><isbn>9780879426552</isbn><abstract>The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.< ></abstract><pub>IEEE</pub><doi>10.1109/MELCON.1991.161972</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0879426551 |
ispartof | [1991 Proceedings] 6th Mediterranean Electrotechnical Conference, 1991, p.840-843 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_161972 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive control Convolution Nonlinear equations Optimal control Predictive control Predictive models Process control Programmable control Sampling methods Stress |
title | Predictive control of integrating processes based on a nonparametric model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20control%20of%20integrating%20processes%20based%20on%20a%20nonparametric%20model&rft.btitle=%5B1991%20Proceedings%5D%206th%20Mediterranean%20Electrotechnical%20Conference&rft.au=Svecko,%20R.&rft.date=1991&rft.spage=840&rft.epage=843%20vol.2&rft.pages=840-843%20vol.2&rft.isbn=0879426551&rft.isbn_list=9780879426552&rft_id=info:doi/10.1109/MELCON.1991.161972&rft_dat=%3Cieee_6IE%3E161972%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-f8cdc732f35456fce180921ab85173350f57c9f3e092a080058b81dc7b30a4a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=161972&rfr_iscdi=true |