Loading…

Predictive control of integrating processes based on a nonparametric model

The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length...

Full description

Saved in:
Bibliographic Details
Main Authors: Svecko, R., Donlagic, D., Cucej, Z., Debevc, M., Tominc-Bele, L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 843 vol.2
container_issue
container_start_page 840
container_title
container_volume
creator Svecko, R.
Donlagic, D.
Cucej, Z.
Debevc, M.
Tominc-Bele, L.
description The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.< >
doi_str_mv 10.1109/MELCON.1991.161972
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_161972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>161972</ieee_id><sourcerecordid>161972</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-f8cdc732f35456fce180921ab85173350f57c9f3e092a080058b81dc7b30a4a93</originalsourceid><addsrcrecordid>eNotj81KxDAUhQMiqOO8wKzyAq25TdMkSynjz1AdF7oe0vRmiLRNSYLg21sYz-bAB-eDQ8gOWAnA9MPbvmuP7yVoDSU0oGV1Re6YkrquGiHghmxT-mZragEg1C05fEQcvM3-B6kNc45hpMFRP2c8R5P9fKZLDBZTwkR7k3CgYaaGzmFeTDQT5ugtncKA4z25dmZMuP3vDfl62n-2L0V3fH5tH7vCg6xy4ZQdrOSV46IWjbMIiukKTK8ESM4Fc0Ja7Tiu1DDFmFC9gnXSc2Zqo_mG7C5ej4inJfrJxN_T5S3_A6mxS3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive control of integrating processes based on a nonparametric model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Svecko, R. ; Donlagic, D. ; Cucej, Z. ; Debevc, M. ; Tominc-Bele, L.</creator><creatorcontrib>Svecko, R. ; Donlagic, D. ; Cucej, Z. ; Debevc, M. ; Tominc-Bele, L.</creatorcontrib><description>The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.&lt; &gt;</description><identifier>ISBN: 0879426551</identifier><identifier>ISBN: 9780879426552</identifier><identifier>DOI: 10.1109/MELCON.1991.161972</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Convolution ; Nonlinear equations ; Optimal control ; Predictive control ; Predictive models ; Process control ; Programmable control ; Sampling methods ; Stress</subject><ispartof>[1991 Proceedings] 6th Mediterranean Electrotechnical Conference, 1991, p.840-843 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/161972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4047,4048,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/161972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Svecko, R.</creatorcontrib><creatorcontrib>Donlagic, D.</creatorcontrib><creatorcontrib>Cucej, Z.</creatorcontrib><creatorcontrib>Debevc, M.</creatorcontrib><creatorcontrib>Tominc-Bele, L.</creatorcontrib><title>Predictive control of integrating processes based on a nonparametric model</title><title>[1991 Proceedings] 6th Mediterranean Electrotechnical Conference</title><addtitle>MELCON</addtitle><description>The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.&lt; &gt;</description><subject>Adaptive control</subject><subject>Convolution</subject><subject>Nonlinear equations</subject><subject>Optimal control</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Programmable control</subject><subject>Sampling methods</subject><subject>Stress</subject><isbn>0879426551</isbn><isbn>9780879426552</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1991</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KxDAUhQMiqOO8wKzyAq25TdMkSynjz1AdF7oe0vRmiLRNSYLg21sYz-bAB-eDQ8gOWAnA9MPbvmuP7yVoDSU0oGV1Re6YkrquGiHghmxT-mZragEg1C05fEQcvM3-B6kNc45hpMFRP2c8R5P9fKZLDBZTwkR7k3CgYaaGzmFeTDQT5ugtncKA4z25dmZMuP3vDfl62n-2L0V3fH5tH7vCg6xy4ZQdrOSV46IWjbMIiukKTK8ESM4Fc0Ja7Tiu1DDFmFC9gnXSc2Zqo_mG7C5ej4inJfrJxN_T5S3_A6mxS3Q</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Svecko, R.</creator><creator>Donlagic, D.</creator><creator>Cucej, Z.</creator><creator>Debevc, M.</creator><creator>Tominc-Bele, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1991</creationdate><title>Predictive control of integrating processes based on a nonparametric model</title><author>Svecko, R. ; Donlagic, D. ; Cucej, Z. ; Debevc, M. ; Tominc-Bele, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-f8cdc732f35456fce180921ab85173350f57c9f3e092a080058b81dc7b30a4a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Adaptive control</topic><topic>Convolution</topic><topic>Nonlinear equations</topic><topic>Optimal control</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Programmable control</topic><topic>Sampling methods</topic><topic>Stress</topic><toplevel>online_resources</toplevel><creatorcontrib>Svecko, R.</creatorcontrib><creatorcontrib>Donlagic, D.</creatorcontrib><creatorcontrib>Cucej, Z.</creatorcontrib><creatorcontrib>Debevc, M.</creatorcontrib><creatorcontrib>Tominc-Bele, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Svecko, R.</au><au>Donlagic, D.</au><au>Cucej, Z.</au><au>Debevc, M.</au><au>Tominc-Bele, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive control of integrating processes based on a nonparametric model</atitle><btitle>[1991 Proceedings] 6th Mediterranean Electrotechnical Conference</btitle><stitle>MELCON</stitle><date>1991</date><risdate>1991</risdate><spage>840</spage><epage>843 vol.2</epage><pages>840-843 vol.2</pages><isbn>0879426551</isbn><isbn>9780879426552</isbn><abstract>The predictive control method presented was developed to assure a stable control of integrating processes that cannot be directly described with bounded weighting sequences. The predictive model is formed on the basis of a differential limited weighting sequence that is identified online. The length of the predictive horizon, is dependent on process characteristics. A delay, stability, and proportional or integrating process behavior are directly connected with weighting sequence member values. With the delay in a predictive algorithm the influence of nonminimal phase on the control stability was reduced. This means that processes with the nonminimal phase can also be controlled with a one-step predictor.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/MELCON.1991.161972</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0879426551
ispartof [1991 Proceedings] 6th Mediterranean Electrotechnical Conference, 1991, p.840-843 vol.2
issn
language eng
recordid cdi_ieee_primary_161972
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Convolution
Nonlinear equations
Optimal control
Predictive control
Predictive models
Process control
Programmable control
Sampling methods
Stress
title Predictive control of integrating processes based on a nonparametric model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20control%20of%20integrating%20processes%20based%20on%20a%20nonparametric%20model&rft.btitle=%5B1991%20Proceedings%5D%206th%20Mediterranean%20Electrotechnical%20Conference&rft.au=Svecko,%20R.&rft.date=1991&rft.spage=840&rft.epage=843%20vol.2&rft.pages=840-843%20vol.2&rft.isbn=0879426551&rft.isbn_list=9780879426552&rft_id=info:doi/10.1109/MELCON.1991.161972&rft_dat=%3Cieee_6IE%3E161972%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i172t-f8cdc732f35456fce180921ab85173350f57c9f3e092a080058b81dc7b30a4a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=161972&rfr_iscdi=true