Loading…
Neural Networks and Spectral Feature Selection for Retrieval of Hot Gases Temperature Profiles
Neural networks appear to be a promising tool to solve the so-called inverse problems focused to obtain a retrieval of certain physical properties related to the radiative transference of energy. In this paper the capability of neural networks to retrieve the temperature profile in a combustion envi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neural networks appear to be a promising tool to solve the so-called inverse problems focused to obtain a retrieval of certain physical properties related to the radiative transference of energy. In this paper the capability of neural networks to retrieve the temperature profile in a combustion environment is proposed. Temperature profile retrieval will be obtained from the measurement of the spectral distribution of energy radiated by the hot gases (combustion products) at wavelengths corresponding to the infrared region. High spectral resolution is usually needed to gain a certain accuracy in the retrieval process. However, this great amount of information makes mandatory a reduction of the dimensionality of the problem. In this sense a careful selection of wavelengths in the spectrum must be performed. With this purpose principal component analysis technique is used to automatically determine those wavelengths in the spectrum that carry relevant information on temperature distribution. A multilayer perceptron will be trained with the different energies associated to the selected wavelengths. The results presented show that multilayer perceptron combined with principal component analysis is a suitable alternative in this field |
---|---|
DOI: | 10.1109/CIMCA.2005.1631449 |