Loading…

Shape Guided Object Segmentation

We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible fi...

Full description

Saved in:
Bibliographic Details
Main Authors: Borenstein, E., Malik, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 976
container_issue
container_start_page 969
container_title
container_volume 1
creator Borenstein, E.
Malik, J.
description We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible figure-ground segmentations of the image. This prior is used by our top-down part to query and detect object parts in the image using stored shape templates. The detected parts are integrated to produce a global approximation for the object's shape, which is then used by an inference algorithm to produce the final segmentation. Experiments with a large sample of horse and runner images demonstrate strong figure-ground segmentation despite high object and background variability. The segmentations are robust to changes in appearance since the matching component depends on shape criteria alone. The model may be useful for additional visual tasks requiring labeling, such as the segmentation of multiple scene objects.
doi_str_mv 10.1109/CVPR.2006.276
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1640856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1640856</ieee_id><sourcerecordid>1640856</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1296-534034f0d86abcb76772d3880a81511d31aa2285214079615d20824a0671b3c63</originalsourceid><addsrcrecordid>eNotzE9PwjAYgPEmaiKBHTl52RfYfP-0b9ujWRRNSCCAXEm3Fi0RJGwe_Paa6HP53R6lpgg1Ivj7Zrtc1QQgNVm5UoW3Dqx4Q8ZbuVYjBOFKPPpbVfT9AX7TRjPBSJXr93BO5ewrxxTLRXtI3VCu09sxnYYw5M_TRN3sw0efin_H6vXpcdM8V_PF7KV5mFcZyUtlWAPrPUQnoe1aK9ZSZOcgODSIkTEEImcINVgvaCKBIx1ALLbcCY_V3d83p5R250s-hsv3DkWDM8I_5Ak7FA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape Guided Object Segmentation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Borenstein, E. ; Malik, J.</creator><creatorcontrib>Borenstein, E. ; Malik, J.</creatorcontrib><description>We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible figure-ground segmentations of the image. This prior is used by our top-down part to query and detect object parts in the image using stored shape templates. The detected parts are integrated to produce a global approximation for the object's shape, which is then used by an inference algorithm to produce the final segmentation. Experiments with a large sample of horse and runner images demonstrate strong figure-ground segmentation despite high object and background variability. The segmentations are robust to changes in appearance since the matching component depends on shape criteria alone. The model may be useful for additional visual tasks requiring labeling, such as the segmentation of multiple scene objects.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769525976</identifier><identifier>ISBN: 0769525970</identifier><identifier>DOI: 10.1109/CVPR.2006.276</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Bayesian methods ; Horses ; Image segmentation ; Inference algorithms ; Labeling ; Object detection ; Object segmentation ; Robustness ; Shape</subject><ispartof>2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, Vol.1, p.969-976</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1640856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1640856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Borenstein, E.</creatorcontrib><creatorcontrib>Malik, J.</creatorcontrib><title>Shape Guided Object Segmentation</title><title>2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)</title><addtitle>CVPR</addtitle><description>We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible figure-ground segmentations of the image. This prior is used by our top-down part to query and detect object parts in the image using stored shape templates. The detected parts are integrated to produce a global approximation for the object's shape, which is then used by an inference algorithm to produce the final segmentation. Experiments with a large sample of horse and runner images demonstrate strong figure-ground segmentation despite high object and background variability. The segmentations are robust to changes in appearance since the matching component depends on shape criteria alone. The model may be useful for additional visual tasks requiring labeling, such as the segmentation of multiple scene objects.</description><subject>Approximation algorithms</subject><subject>Bayesian methods</subject><subject>Horses</subject><subject>Image segmentation</subject><subject>Inference algorithms</subject><subject>Labeling</subject><subject>Object detection</subject><subject>Object segmentation</subject><subject>Robustness</subject><subject>Shape</subject><issn>1063-6919</issn><isbn>9780769525976</isbn><isbn>0769525970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzE9PwjAYgPEmaiKBHTl52RfYfP-0b9ujWRRNSCCAXEm3Fi0RJGwe_Paa6HP53R6lpgg1Ivj7Zrtc1QQgNVm5UoW3Dqx4Q8ZbuVYjBOFKPPpbVfT9AX7TRjPBSJXr93BO5ewrxxTLRXtI3VCu09sxnYYw5M_TRN3sw0efin_H6vXpcdM8V_PF7KV5mFcZyUtlWAPrPUQnoe1aK9ZSZOcgODSIkTEEImcINVgvaCKBIx1ALLbcCY_V3d83p5R250s-hsv3DkWDM8I_5Ak7FA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Borenstein, E.</creator><creator>Malik, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Shape Guided Object Segmentation</title><author>Borenstein, E. ; Malik, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1296-534034f0d86abcb76772d3880a81511d31aa2285214079615d20824a0671b3c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation algorithms</topic><topic>Bayesian methods</topic><topic>Horses</topic><topic>Image segmentation</topic><topic>Inference algorithms</topic><topic>Labeling</topic><topic>Object detection</topic><topic>Object segmentation</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Borenstein, E.</creatorcontrib><creatorcontrib>Malik, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Borenstein, E.</au><au>Malik, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape Guided Object Segmentation</atitle><btitle>2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)</btitle><stitle>CVPR</stitle><date>2006</date><risdate>2006</risdate><volume>1</volume><spage>969</spage><epage>976</epage><pages>969-976</pages><issn>1063-6919</issn><isbn>9780769525976</isbn><isbn>0769525970</isbn><abstract>We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible figure-ground segmentations of the image. This prior is used by our top-down part to query and detect object parts in the image using stored shape templates. The detected parts are integrated to produce a global approximation for the object's shape, which is then used by an inference algorithm to produce the final segmentation. Experiments with a large sample of horse and runner images demonstrate strong figure-ground segmentation despite high object and background variability. The segmentations are robust to changes in appearance since the matching component depends on shape criteria alone. The model may be useful for additional visual tasks requiring labeling, such as the segmentation of multiple scene objects.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2006.276</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, Vol.1, p.969-976
issn 1063-6919
language eng
recordid cdi_ieee_primary_1640856
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Bayesian methods
Horses
Image segmentation
Inference algorithms
Labeling
Object detection
Object segmentation
Robustness
Shape
title Shape Guided Object Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20Guided%20Object%20Segmentation&rft.btitle=2006%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR'06)&rft.au=Borenstein,%20E.&rft.date=2006&rft.volume=1&rft.spage=969&rft.epage=976&rft.pages=969-976&rft.issn=1063-6919&rft.isbn=9780769525976&rft.isbn_list=0769525970&rft_id=info:doi/10.1109/CVPR.2006.276&rft_dat=%3Cieee_6IE%3E1640856%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1296-534034f0d86abcb76772d3880a81511d31aa2285214079615d20824a0671b3c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1640856&rfr_iscdi=true