Loading…

Context and Hierarchy in a Probabilistic Image Model

It is widely conjectured that the excellent ROC performance of biological vision systems is due in large part to the exploitation of context at each of many levels in a part/whole hierarchy. We propose a mathematical framework (a "composition machine") for constructing probabilistic hierar...

Full description

Saved in:
Bibliographic Details
Main Authors: Ya Jin, Geman, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2152
container_issue
container_start_page 2145
container_title
container_volume 2
creator Ya Jin
Geman, S.
description It is widely conjectured that the excellent ROC performance of biological vision systems is due in large part to the exploitation of context at each of many levels in a part/whole hierarchy. We propose a mathematical framework (a "composition machine") for constructing probabilistic hierarchical image models, designed to accommodate arbitrary contextual relationships, and we build a demonstration system for reading Massachusetts license plates in an image set collected at Logan Airport. The demonstration system detects and correctly reads more than 98% of the plates, with a negligible rate of false detection. Unlike a formal grammar, the architecture of a composition machine does not exclude the sharing of sub-parts among multiple entities, and does not limit interpretations to single trees (e.g. a scene can have multiple license plates, or no plates at all). In this sense, the architecture is more like a general Bayesian network than a formal grammar. On the other hand, unlike a Bayesian network, the distribution is non-Markovian, and therefore more like a probabilistic context-sensitive grammar. The conceptualization and construction of a composition machine is facilitated by its formulation as the result of a series of non-Markovian perturbations of a "Markov backbone."
doi_str_mv 10.1109/CVPR.2006.86
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1641016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1641016</ieee_id><sourcerecordid>1641016</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f6e8bddfd9a646e8f3cc1ce7a1c53e56a2b191246143bb747bac20f4b505972f3</originalsourceid><addsrcrecordid>eNotjs1KxDAURgMqOIzduXOTF2i9Nz83zVKKOgMjDjK4HZI00UinlbYL5-0t6Lc5Z3X4GLtFqBDB3jfv-7dKAFBV0wUrrKnBkNVCW0OXbIVAsiSL9poV0_QFy5RWUsCKqWbo5_gzc9e3fJPj6Mbweea5547vx8E7n7s8zTnw7cl9RP4ytLG7YVfJdVMs_rlmh6fHQ7Mpd6_P2-ZhV2YLc5ko1r5tU2sdqcWTDAFDNA6DllGTEx4tCkWopPdGGe-CgKS8huW3SHLN7v6yOcZ4_B7zyY3nI5JCQJK_KcdEUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Context and Hierarchy in a Probabilistic Image Model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ya Jin ; Geman, S.</creator><creatorcontrib>Ya Jin ; Geman, S.</creatorcontrib><description>It is widely conjectured that the excellent ROC performance of biological vision systems is due in large part to the exploitation of context at each of many levels in a part/whole hierarchy. We propose a mathematical framework (a "composition machine") for constructing probabilistic hierarchical image models, designed to accommodate arbitrary contextual relationships, and we build a demonstration system for reading Massachusetts license plates in an image set collected at Logan Airport. The demonstration system detects and correctly reads more than 98% of the plates, with a negligible rate of false detection. Unlike a formal grammar, the architecture of a composition machine does not exclude the sharing of sub-parts among multiple entities, and does not limit interpretations to single trees (e.g. a scene can have multiple license plates, or no plates at all). In this sense, the architecture is more like a general Bayesian network than a formal grammar. On the other hand, unlike a Bayesian network, the distribution is non-Markovian, and therefore more like a probabilistic context-sensitive grammar. The conceptualization and construction of a composition machine is facilitated by its formulation as the result of a series of non-Markovian perturbations of a "Markov backbone."</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9780769525976</identifier><identifier>ISBN: 0769525970</identifier><identifier>DOI: 10.1109/CVPR.2006.86</identifier><language>eng</language><publisher>IEEE</publisher><subject>Airports ; Bayesian methods ; Biological system modeling ; Computer vision ; Context modeling ; Layout ; Licenses ; Machine vision ; Mathematical model ; Mathematics</subject><ispartof>2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, Vol.2, p.2145-2152</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1641016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1641016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ya Jin</creatorcontrib><creatorcontrib>Geman, S.</creatorcontrib><title>Context and Hierarchy in a Probabilistic Image Model</title><title>2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)</title><addtitle>CVPR</addtitle><description>It is widely conjectured that the excellent ROC performance of biological vision systems is due in large part to the exploitation of context at each of many levels in a part/whole hierarchy. We propose a mathematical framework (a "composition machine") for constructing probabilistic hierarchical image models, designed to accommodate arbitrary contextual relationships, and we build a demonstration system for reading Massachusetts license plates in an image set collected at Logan Airport. The demonstration system detects and correctly reads more than 98% of the plates, with a negligible rate of false detection. Unlike a formal grammar, the architecture of a composition machine does not exclude the sharing of sub-parts among multiple entities, and does not limit interpretations to single trees (e.g. a scene can have multiple license plates, or no plates at all). In this sense, the architecture is more like a general Bayesian network than a formal grammar. On the other hand, unlike a Bayesian network, the distribution is non-Markovian, and therefore more like a probabilistic context-sensitive grammar. The conceptualization and construction of a composition machine is facilitated by its formulation as the result of a series of non-Markovian perturbations of a "Markov backbone."</description><subject>Airports</subject><subject>Bayesian methods</subject><subject>Biological system modeling</subject><subject>Computer vision</subject><subject>Context modeling</subject><subject>Layout</subject><subject>Licenses</subject><subject>Machine vision</subject><subject>Mathematical model</subject><subject>Mathematics</subject><issn>1063-6919</issn><isbn>9780769525976</isbn><isbn>0769525970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KxDAURgMqOIzduXOTF2i9Nz83zVKKOgMjDjK4HZI00UinlbYL5-0t6Lc5Z3X4GLtFqBDB3jfv-7dKAFBV0wUrrKnBkNVCW0OXbIVAsiSL9poV0_QFy5RWUsCKqWbo5_gzc9e3fJPj6Mbweea5547vx8E7n7s8zTnw7cl9RP4ytLG7YVfJdVMs_rlmh6fHQ7Mpd6_P2-ZhV2YLc5ko1r5tU2sdqcWTDAFDNA6DllGTEx4tCkWopPdGGe-CgKS8huW3SHLN7v6yOcZ4_B7zyY3nI5JCQJK_KcdEUA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Ya Jin</creator><creator>Geman, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Context and Hierarchy in a Probabilistic Image Model</title><author>Ya Jin ; Geman, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f6e8bddfd9a646e8f3cc1ce7a1c53e56a2b191246143bb747bac20f4b505972f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Airports</topic><topic>Bayesian methods</topic><topic>Biological system modeling</topic><topic>Computer vision</topic><topic>Context modeling</topic><topic>Layout</topic><topic>Licenses</topic><topic>Machine vision</topic><topic>Mathematical model</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Ya Jin</creatorcontrib><creatorcontrib>Geman, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ya Jin</au><au>Geman, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Context and Hierarchy in a Probabilistic Image Model</atitle><btitle>2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)</btitle><stitle>CVPR</stitle><date>2006</date><risdate>2006</risdate><volume>2</volume><spage>2145</spage><epage>2152</epage><pages>2145-2152</pages><issn>1063-6919</issn><isbn>9780769525976</isbn><isbn>0769525970</isbn><abstract>It is widely conjectured that the excellent ROC performance of biological vision systems is due in large part to the exploitation of context at each of many levels in a part/whole hierarchy. We propose a mathematical framework (a "composition machine") for constructing probabilistic hierarchical image models, designed to accommodate arbitrary contextual relationships, and we build a demonstration system for reading Massachusetts license plates in an image set collected at Logan Airport. The demonstration system detects and correctly reads more than 98% of the plates, with a negligible rate of false detection. Unlike a formal grammar, the architecture of a composition machine does not exclude the sharing of sub-parts among multiple entities, and does not limit interpretations to single trees (e.g. a scene can have multiple license plates, or no plates at all). In this sense, the architecture is more like a general Bayesian network than a formal grammar. On the other hand, unlike a Bayesian network, the distribution is non-Markovian, and therefore more like a probabilistic context-sensitive grammar. The conceptualization and construction of a composition machine is facilitated by its formulation as the result of a series of non-Markovian perturbations of a "Markov backbone."</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2006.86</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 2006, Vol.2, p.2145-2152
issn 1063-6919
language eng
recordid cdi_ieee_primary_1641016
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Airports
Bayesian methods
Biological system modeling
Computer vision
Context modeling
Layout
Licenses
Machine vision
Mathematical model
Mathematics
title Context and Hierarchy in a Probabilistic Image Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Context%20and%20Hierarchy%20in%20a%20Probabilistic%20Image%20Model&rft.btitle=2006%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR'06)&rft.au=Ya%20Jin&rft.date=2006&rft.volume=2&rft.spage=2145&rft.epage=2152&rft.pages=2145-2152&rft.issn=1063-6919&rft.isbn=9780769525976&rft.isbn_list=0769525970&rft_id=info:doi/10.1109/CVPR.2006.86&rft_dat=%3Cieee_6IE%3E1641016%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f6e8bddfd9a646e8f3cc1ce7a1c53e56a2b191246143bb747bac20f4b505972f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1641016&rfr_iscdi=true