Loading…

Sampling Trajectory Streams with Spatiotemporal Criteria

Monitoring movement of high-dimensional points is essential for environmental databases, geospatial applications, and biodiversity informatics as it reveals crucial information about data evolution, provenance detection, pattern matching etc. Despite recent research interest on processing continuous...

Full description

Saved in:
Bibliographic Details
Main Authors: Potamias, M., Patroumpas, K., Sellis, T.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 284
container_issue
container_start_page 275
container_title
container_volume
creator Potamias, M.
Patroumpas, K.
Sellis, T.
description Monitoring movement of high-dimensional points is essential for environmental databases, geospatial applications, and biodiversity informatics as it reveals crucial information about data evolution, provenance detection, pattern matching etc. Despite recent research interest on processing continuous queries in the context of spatiotemporal data streams, the main focus is on managing the current location of numerous moving objects. In this paper, we turn our attention onto a historical perspective of movement and examine trajectories generated by streaming positional updates. The key challenge is how to maintain a concise, yet quite reliable summary of each object's movement, avoiding any superfluous details and saving in processing complexity and communication cost. We propose two single-pass approximation techniques based on sampling that take advantage of the spatial locality and temporal timeliness inherent in trajectory streams. As a means of reducing substantially the scale of the datasets, we utilize heuristic prediction to distinguish which locations to preserve in the compressed trajectories. A comprehensive experimental study verifies the stability and robustness of the proposed techniques and demonstrates that intelligent compression schemes are able to act as effective load shedding operators achieving remarkable results
doi_str_mv 10.1109/SSDBM.2006.45
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1644324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1644324</ieee_id><sourcerecordid>1644324</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a6f6b52b1579575b6fe1dedaf272e0947139071f45425c6c5803a964413bd743</originalsourceid><addsrcrecordid>eNotjr1OwzAURi0BEqXtyMSSF0i41_a14xHCr1TUwd0rJ3HAVUIixxLq2xMJvuUsR0cfY7cIBSKYe2ufHj8KDqAKSRfsBrQyxMmAuGQrJMJcCSOu2XaeT7BMEklerlhp3TD14fszO0R38k0a4zmzKXo3zNlPSF-ZnVwKY_LDNEbXZ1UMycfgNuyqc_3st_9cM_vyfKje8t3-9b162OXBQMqd6lRNvEbShjTVqvPY-tZ1XHMPRmoUBjR2cnlDjWqoBOGMkhJF3Wop1uzurxq898cphsHF8xEXQXApfgEeckT4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Sampling Trajectory Streams with Spatiotemporal Criteria</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Potamias, M. ; Patroumpas, K. ; Sellis, T.</creator><creatorcontrib>Potamias, M. ; Patroumpas, K. ; Sellis, T.</creatorcontrib><description>Monitoring movement of high-dimensional points is essential for environmental databases, geospatial applications, and biodiversity informatics as it reveals crucial information about data evolution, provenance detection, pattern matching etc. Despite recent research interest on processing continuous queries in the context of spatiotemporal data streams, the main focus is on managing the current location of numerous moving objects. In this paper, we turn our attention onto a historical perspective of movement and examine trajectories generated by streaming positional updates. The key challenge is how to maintain a concise, yet quite reliable summary of each object's movement, avoiding any superfluous details and saving in processing complexity and communication cost. We propose two single-pass approximation techniques based on sampling that take advantage of the spatial locality and temporal timeliness inherent in trajectory streams. As a means of reducing substantially the scale of the datasets, we utilize heuristic prediction to distinguish which locations to preserve in the compressed trajectories. A comprehensive experimental study verifies the stability and robustness of the proposed techniques and demonstrates that intelligent compression schemes are able to act as effective load shedding operators achieving remarkable results</description><identifier>ISSN: 1551-6393</identifier><identifier>ISBN: 0769525903</identifier><identifier>ISBN: 9780769525907</identifier><identifier>DOI: 10.1109/SSDBM.2006.45</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biodiversity ; Costs ; Informatics ; Maintenance ; Monitoring ; Pattern matching ; Robust stability ; Sampling methods ; Spatiotemporal phenomena</subject><ispartof>18th International Conference on Scientific and Statistical Database Management (SSDBM'06), 2006, p.275-284</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1644324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1644324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Potamias, M.</creatorcontrib><creatorcontrib>Patroumpas, K.</creatorcontrib><creatorcontrib>Sellis, T.</creatorcontrib><title>Sampling Trajectory Streams with Spatiotemporal Criteria</title><title>18th International Conference on Scientific and Statistical Database Management (SSDBM'06)</title><addtitle>SSDBM</addtitle><description>Monitoring movement of high-dimensional points is essential for environmental databases, geospatial applications, and biodiversity informatics as it reveals crucial information about data evolution, provenance detection, pattern matching etc. Despite recent research interest on processing continuous queries in the context of spatiotemporal data streams, the main focus is on managing the current location of numerous moving objects. In this paper, we turn our attention onto a historical perspective of movement and examine trajectories generated by streaming positional updates. The key challenge is how to maintain a concise, yet quite reliable summary of each object's movement, avoiding any superfluous details and saving in processing complexity and communication cost. We propose two single-pass approximation techniques based on sampling that take advantage of the spatial locality and temporal timeliness inherent in trajectory streams. As a means of reducing substantially the scale of the datasets, we utilize heuristic prediction to distinguish which locations to preserve in the compressed trajectories. A comprehensive experimental study verifies the stability and robustness of the proposed techniques and demonstrates that intelligent compression schemes are able to act as effective load shedding operators achieving remarkable results</description><subject>Biodiversity</subject><subject>Costs</subject><subject>Informatics</subject><subject>Maintenance</subject><subject>Monitoring</subject><subject>Pattern matching</subject><subject>Robust stability</subject><subject>Sampling methods</subject><subject>Spatiotemporal phenomena</subject><issn>1551-6393</issn><isbn>0769525903</isbn><isbn>9780769525907</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjr1OwzAURi0BEqXtyMSSF0i41_a14xHCr1TUwd0rJ3HAVUIixxLq2xMJvuUsR0cfY7cIBSKYe2ufHj8KDqAKSRfsBrQyxMmAuGQrJMJcCSOu2XaeT7BMEklerlhp3TD14fszO0R38k0a4zmzKXo3zNlPSF-ZnVwKY_LDNEbXZ1UMycfgNuyqc_3st_9cM_vyfKje8t3-9b162OXBQMqd6lRNvEbShjTVqvPY-tZ1XHMPRmoUBjR2cnlDjWqoBOGMkhJF3Wop1uzurxq898cphsHF8xEXQXApfgEeckT4</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Potamias, M.</creator><creator>Patroumpas, K.</creator><creator>Sellis, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Sampling Trajectory Streams with Spatiotemporal Criteria</title><author>Potamias, M. ; Patroumpas, K. ; Sellis, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a6f6b52b1579575b6fe1dedaf272e0947139071f45425c6c5803a964413bd743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biodiversity</topic><topic>Costs</topic><topic>Informatics</topic><topic>Maintenance</topic><topic>Monitoring</topic><topic>Pattern matching</topic><topic>Robust stability</topic><topic>Sampling methods</topic><topic>Spatiotemporal phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Potamias, M.</creatorcontrib><creatorcontrib>Patroumpas, K.</creatorcontrib><creatorcontrib>Sellis, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Potamias, M.</au><au>Patroumpas, K.</au><au>Sellis, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sampling Trajectory Streams with Spatiotemporal Criteria</atitle><btitle>18th International Conference on Scientific and Statistical Database Management (SSDBM'06)</btitle><stitle>SSDBM</stitle><date>2006</date><risdate>2006</risdate><spage>275</spage><epage>284</epage><pages>275-284</pages><issn>1551-6393</issn><isbn>0769525903</isbn><isbn>9780769525907</isbn><abstract>Monitoring movement of high-dimensional points is essential for environmental databases, geospatial applications, and biodiversity informatics as it reveals crucial information about data evolution, provenance detection, pattern matching etc. Despite recent research interest on processing continuous queries in the context of spatiotemporal data streams, the main focus is on managing the current location of numerous moving objects. In this paper, we turn our attention onto a historical perspective of movement and examine trajectories generated by streaming positional updates. The key challenge is how to maintain a concise, yet quite reliable summary of each object's movement, avoiding any superfluous details and saving in processing complexity and communication cost. We propose two single-pass approximation techniques based on sampling that take advantage of the spatial locality and temporal timeliness inherent in trajectory streams. As a means of reducing substantially the scale of the datasets, we utilize heuristic prediction to distinguish which locations to preserve in the compressed trajectories. A comprehensive experimental study verifies the stability and robustness of the proposed techniques and demonstrates that intelligent compression schemes are able to act as effective load shedding operators achieving remarkable results</abstract><pub>IEEE</pub><doi>10.1109/SSDBM.2006.45</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-6393
ispartof 18th International Conference on Scientific and Statistical Database Management (SSDBM'06), 2006, p.275-284
issn 1551-6393
language eng
recordid cdi_ieee_primary_1644324
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biodiversity
Costs
Informatics
Maintenance
Monitoring
Pattern matching
Robust stability
Sampling methods
Spatiotemporal phenomena
title Sampling Trajectory Streams with Spatiotemporal Criteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sampling%20Trajectory%20Streams%20with%20Spatiotemporal%20Criteria&rft.btitle=18th%20International%20Conference%20on%20Scientific%20and%20Statistical%20Database%20Management%20(SSDBM'06)&rft.au=Potamias,%20M.&rft.date=2006&rft.spage=275&rft.epage=284&rft.pages=275-284&rft.issn=1551-6393&rft.isbn=0769525903&rft.isbn_list=9780769525907&rft_id=info:doi/10.1109/SSDBM.2006.45&rft_dat=%3Cieee_6IE%3E1644324%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a6f6b52b1579575b6fe1dedaf272e0947139071f45425c6c5803a964413bd743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1644324&rfr_iscdi=true