Loading…

Visualizing Concept Associations Using Concept Density Maps

The concept mapping algorithm proposed in an earlier paper is one of the dimensionality reduction techniques that can be used for knowledge domain visualization. Using this algorithm to visualize large knowledge domains may not always provide a good overview of the domain due to visual cluttering of...

Full description

Saved in:
Bibliographic Details
Main Authors: van Eck, N.J., Frasincar, F., van den Berg, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 275
container_issue
container_start_page 270
container_title
container_volume
creator van Eck, N.J.
Frasincar, F.
van den Berg, J.
description The concept mapping algorithm proposed in an earlier paper is one of the dimensionality reduction techniques that can be used for knowledge domain visualization. Using this algorithm to visualize large knowledge domains may not always provide a good overview of the domain due to visual cluttering of concepts. In this paper, we propose to apply kernel density estimation to the visualization of concept maps in order to be able to better explore large knowledge domains. Kernel density estimation proves to be useful for the identification of concept clusters at different levels of detail. In addition to the visual exploration of large knowledge domains, we are also able to visually verify the hypothesis that the concept mapping algorithm places related concepts close to each other. The flexibility and effectiveness of our approach is validated by applying the proposed technique to different visualization scenarios for the field of computational intelligence
doi_str_mv 10.1109/IV.2006.128
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1648272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1648272</ieee_id><sourcerecordid>1648272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-42fd0ad12db2f351373d43f4a89713214895a0133912742edfab2f2a3447d16e3</originalsourceid><addsrcrecordid>eNpNjr1OwzAURi1-JELpxMiSF0jwvdf2tcVUhQKVilho18rUDjIqSVSHoTw9lWBg-oZzdPQJcQ2yBpDudrGuUUpTA9oTUSCxriSQPRVTx1aycRqNRD4TBWgtKyOJL8Rlzh9SKq1ZF-JunfKX36Xv1L2XTd9t4zCWs5z7bfJj6rtcrvJ_dB-7nMZD-eyHfCXOW7_Lcfq3E7F6mL82T9Xy5XHRzJZVAtZjpbAN0gfA8IYtaSCmoKhV3joGQlDWaX-8TQ6QFcbQ-qOInpTiACbSRNz8dlOMcTPs06ffHzZglEVG-gGlqkdi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visualizing Concept Associations Using Concept Density Maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>van Eck, N.J. ; Frasincar, F. ; van den Berg, J.</creator><creatorcontrib>van Eck, N.J. ; Frasincar, F. ; van den Berg, J.</creatorcontrib><description>The concept mapping algorithm proposed in an earlier paper is one of the dimensionality reduction techniques that can be used for knowledge domain visualization. Using this algorithm to visualize large knowledge domains may not always provide a good overview of the domain due to visual cluttering of concepts. In this paper, we propose to apply kernel density estimation to the visualization of concept maps in order to be able to better explore large knowledge domains. Kernel density estimation proves to be useful for the identification of concept clusters at different levels of detail. In addition to the visual exploration of large knowledge domains, we are also able to visually verify the hypothesis that the concept mapping algorithm places related concepts close to each other. The flexibility and effectiveness of our approach is validated by applying the proposed technique to different visualization scenarios for the field of computational intelligence</description><identifier>ISSN: 1550-6037</identifier><identifier>ISBN: 9780769526027</identifier><identifier>ISBN: 0769526020</identifier><identifier>EISSN: 2375-0138</identifier><identifier>DOI: 10.1109/IV.2006.128</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Computational intelligence ; Data mining ; Data visualization ; Frequency ; Humans ; Information analysis ; Kernel</subject><ispartof>Tenth International Conference on Information Visualisation (IV'06), 2006, p.270-275</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1648272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1648272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Eck, N.J.</creatorcontrib><creatorcontrib>Frasincar, F.</creatorcontrib><creatorcontrib>van den Berg, J.</creatorcontrib><title>Visualizing Concept Associations Using Concept Density Maps</title><title>Tenth International Conference on Information Visualisation (IV'06)</title><addtitle>IV</addtitle><description>The concept mapping algorithm proposed in an earlier paper is one of the dimensionality reduction techniques that can be used for knowledge domain visualization. Using this algorithm to visualize large knowledge domains may not always provide a good overview of the domain due to visual cluttering of concepts. In this paper, we propose to apply kernel density estimation to the visualization of concept maps in order to be able to better explore large knowledge domains. Kernel density estimation proves to be useful for the identification of concept clusters at different levels of detail. In addition to the visual exploration of large knowledge domains, we are also able to visually verify the hypothesis that the concept mapping algorithm places related concepts close to each other. The flexibility and effectiveness of our approach is validated by applying the proposed technique to different visualization scenarios for the field of computational intelligence</description><subject>Clustering algorithms</subject><subject>Computational intelligence</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Frequency</subject><subject>Humans</subject><subject>Information analysis</subject><subject>Kernel</subject><issn>1550-6037</issn><issn>2375-0138</issn><isbn>9780769526027</isbn><isbn>0769526020</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjr1OwzAURi1-JELpxMiSF0jwvdf2tcVUhQKVilho18rUDjIqSVSHoTw9lWBg-oZzdPQJcQ2yBpDudrGuUUpTA9oTUSCxriSQPRVTx1aycRqNRD4TBWgtKyOJL8Rlzh9SKq1ZF-JunfKX36Xv1L2XTd9t4zCWs5z7bfJj6rtcrvJ_dB-7nMZD-eyHfCXOW7_Lcfq3E7F6mL82T9Xy5XHRzJZVAtZjpbAN0gfA8IYtaSCmoKhV3joGQlDWaX-8TQ6QFcbQ-qOInpTiACbSRNz8dlOMcTPs06ffHzZglEVG-gGlqkdi</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>van Eck, N.J.</creator><creator>Frasincar, F.</creator><creator>van den Berg, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Visualizing Concept Associations Using Concept Density Maps</title><author>van Eck, N.J. ; Frasincar, F. ; van den Berg, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-42fd0ad12db2f351373d43f4a89713214895a0133912742edfab2f2a3447d16e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Clustering algorithms</topic><topic>Computational intelligence</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Frequency</topic><topic>Humans</topic><topic>Information analysis</topic><topic>Kernel</topic><toplevel>online_resources</toplevel><creatorcontrib>van Eck, N.J.</creatorcontrib><creatorcontrib>Frasincar, F.</creatorcontrib><creatorcontrib>van den Berg, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Eck, N.J.</au><au>Frasincar, F.</au><au>van den Berg, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visualizing Concept Associations Using Concept Density Maps</atitle><btitle>Tenth International Conference on Information Visualisation (IV'06)</btitle><stitle>IV</stitle><date>2006</date><risdate>2006</risdate><spage>270</spage><epage>275</epage><pages>270-275</pages><issn>1550-6037</issn><eissn>2375-0138</eissn><isbn>9780769526027</isbn><isbn>0769526020</isbn><abstract>The concept mapping algorithm proposed in an earlier paper is one of the dimensionality reduction techniques that can be used for knowledge domain visualization. Using this algorithm to visualize large knowledge domains may not always provide a good overview of the domain due to visual cluttering of concepts. In this paper, we propose to apply kernel density estimation to the visualization of concept maps in order to be able to better explore large knowledge domains. Kernel density estimation proves to be useful for the identification of concept clusters at different levels of detail. In addition to the visual exploration of large knowledge domains, we are also able to visually verify the hypothesis that the concept mapping algorithm places related concepts close to each other. The flexibility and effectiveness of our approach is validated by applying the proposed technique to different visualization scenarios for the field of computational intelligence</abstract><pub>IEEE</pub><doi>10.1109/IV.2006.128</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-6037
ispartof Tenth International Conference on Information Visualisation (IV'06), 2006, p.270-275
issn 1550-6037
2375-0138
language eng
recordid cdi_ieee_primary_1648272
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Computational intelligence
Data mining
Data visualization
Frequency
Humans
Information analysis
Kernel
title Visualizing Concept Associations Using Concept Density Maps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visualizing%20Concept%20Associations%20Using%20Concept%20Density%20Maps&rft.btitle=Tenth%20International%20Conference%20on%20Information%20Visualisation%20(IV'06)&rft.au=van%20Eck,%20N.J.&rft.date=2006&rft.spage=270&rft.epage=275&rft.pages=270-275&rft.issn=1550-6037&rft.eissn=2375-0138&rft.isbn=9780769526027&rft.isbn_list=0769526020&rft_id=info:doi/10.1109/IV.2006.128&rft_dat=%3Cieee_6IE%3E1648272%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-42fd0ad12db2f351373d43f4a89713214895a0133912742edfab2f2a3447d16e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1648272&rfr_iscdi=true