Loading…

Face Recognition Based on Separable Lattice HMMS

In this paper, we propose separable lattice hidden Markov models, in which multiple hidden state sequences interact to model the observation on a lattice. The proposed model can be efficiently applied for modeling images, image sequences, 3-D object models and higher dimensional applications, due to...

Full description

Saved in:
Bibliographic Details
Main Authors: Kurata, D., Nankaku, Y., Tokuda, K., Kitamura, T., Ghahramani, Z.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page V
container_issue
container_start_page V
container_title
container_volume 5
creator Kurata, D.
Nankaku, Y.
Tokuda, K.
Kitamura, T.
Ghahramani, Z.
description In this paper, we propose separable lattice hidden Markov models, in which multiple hidden state sequences interact to model the observation on a lattice. The proposed model can be efficiently applied for modeling images, image sequences, 3-D object models and higher dimensional applications, due to the composite structure of Markov chains which reduces the complexity while retaining good properties for multi-dimensional data. In case of 2-D lattices, the proposed model performs an elastic matching in both horizontal and vertical directions; this makes it possible to model not only invariances to the size and location of an object but also nonlinear warping in each dimension. We present a training algorithm for separable lattice HMMs based on a variational approximation. Moreover, the deterministic annealing EM (DAEM) algorithm was applied to the variational algorithm for separable lattice HMMs. Face recognition experiments on the XM2VTS database show that the proposed model has good properties for face image modeling
doi_str_mv 10.1109/ICASSP.2006.1661381
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1661381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1661381</ieee_id><sourcerecordid>1661381</sourcerecordid><originalsourceid>FETCH-ieee_primary_16613813</originalsourceid><addsrcrecordid>eNp9jr0KwjAURi_-gEX7BF36Aq33pjFtRhVFQUGMg5vEepVIrdJ08e11cHb6DpwzfAARYUqEeryeT43ZpQJRpaQUZQV1IBBZrhPSeOxCqPOCpJASpdJFDwKaCEwUST2A0Ps7IpJWucxEALi0Jcd7Lp-32rXuWccz6_kSf8Hwyzb2XHG8sW3rvtlquzUj6F9t5Tn87RCi5eIwXyWOmU-vxj1s8z79fmX_7QeCgTbC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face Recognition Based on Separable Lattice HMMS</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kurata, D. ; Nankaku, Y. ; Tokuda, K. ; Kitamura, T. ; Ghahramani, Z.</creator><creatorcontrib>Kurata, D. ; Nankaku, Y. ; Tokuda, K. ; Kitamura, T. ; Ghahramani, Z.</creatorcontrib><description>In this paper, we propose separable lattice hidden Markov models, in which multiple hidden state sequences interact to model the observation on a lattice. The proposed model can be efficiently applied for modeling images, image sequences, 3-D object models and higher dimensional applications, due to the composite structure of Markov chains which reduces the complexity while retaining good properties for multi-dimensional data. In case of 2-D lattices, the proposed model performs an elastic matching in both horizontal and vertical directions; this makes it possible to model not only invariances to the size and location of an object but also nonlinear warping in each dimension. We present a training algorithm for separable lattice HMMs based on a variational approximation. Moreover, the deterministic annealing EM (DAEM) algorithm was applied to the variational algorithm for separable lattice HMMs. Face recognition experiments on the XM2VTS database show that the proposed model has good properties for face image modeling</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9781424404698</identifier><identifier>ISBN: 142440469X</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2006.1661381</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annealing ; Approximation algorithms ; Computational complexity ; Computer science ; Educational institutions ; Face recognition ; Hidden Markov models ; Image sequences ; Lattices ; Maximum likelihood estimation</subject><ispartof>2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, Vol.5, p.V-V</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1661381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1661381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kurata, D.</creatorcontrib><creatorcontrib>Nankaku, Y.</creatorcontrib><creatorcontrib>Tokuda, K.</creatorcontrib><creatorcontrib>Kitamura, T.</creatorcontrib><creatorcontrib>Ghahramani, Z.</creatorcontrib><title>Face Recognition Based on Separable Lattice HMMS</title><title>2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings</title><addtitle>ICASSP</addtitle><description>In this paper, we propose separable lattice hidden Markov models, in which multiple hidden state sequences interact to model the observation on a lattice. The proposed model can be efficiently applied for modeling images, image sequences, 3-D object models and higher dimensional applications, due to the composite structure of Markov chains which reduces the complexity while retaining good properties for multi-dimensional data. In case of 2-D lattices, the proposed model performs an elastic matching in both horizontal and vertical directions; this makes it possible to model not only invariances to the size and location of an object but also nonlinear warping in each dimension. We present a training algorithm for separable lattice HMMs based on a variational approximation. Moreover, the deterministic annealing EM (DAEM) algorithm was applied to the variational algorithm for separable lattice HMMs. Face recognition experiments on the XM2VTS database show that the proposed model has good properties for face image modeling</description><subject>Annealing</subject><subject>Approximation algorithms</subject><subject>Computational complexity</subject><subject>Computer science</subject><subject>Educational institutions</subject><subject>Face recognition</subject><subject>Hidden Markov models</subject><subject>Image sequences</subject><subject>Lattices</subject><subject>Maximum likelihood estimation</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781424404698</isbn><isbn>142440469X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jr0KwjAURi_-gEX7BF36Aq33pjFtRhVFQUGMg5vEepVIrdJ08e11cHb6DpwzfAARYUqEeryeT43ZpQJRpaQUZQV1IBBZrhPSeOxCqPOCpJASpdJFDwKaCEwUST2A0Ps7IpJWucxEALi0Jcd7Lp-32rXuWccz6_kSf8Hwyzb2XHG8sW3rvtlquzUj6F9t5Tn87RCi5eIwXyWOmU-vxj1s8z79fmX_7QeCgTbC</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kurata, D.</creator><creator>Nankaku, Y.</creator><creator>Tokuda, K.</creator><creator>Kitamura, T.</creator><creator>Ghahramani, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>Face Recognition Based on Separable Lattice HMMS</title><author>Kurata, D. ; Nankaku, Y. ; Tokuda, K. ; Kitamura, T. ; Ghahramani, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_16613813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Annealing</topic><topic>Approximation algorithms</topic><topic>Computational complexity</topic><topic>Computer science</topic><topic>Educational institutions</topic><topic>Face recognition</topic><topic>Hidden Markov models</topic><topic>Image sequences</topic><topic>Lattices</topic><topic>Maximum likelihood estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kurata, D.</creatorcontrib><creatorcontrib>Nankaku, Y.</creatorcontrib><creatorcontrib>Tokuda, K.</creatorcontrib><creatorcontrib>Kitamura, T.</creatorcontrib><creatorcontrib>Ghahramani, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kurata, D.</au><au>Nankaku, Y.</au><au>Tokuda, K.</au><au>Kitamura, T.</au><au>Ghahramani, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Recognition Based on Separable Lattice HMMS</atitle><btitle>2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings</btitle><stitle>ICASSP</stitle><date>2006</date><risdate>2006</risdate><volume>5</volume><spage>V</spage><epage>V</epage><pages>V-V</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9781424404698</isbn><isbn>142440469X</isbn><abstract>In this paper, we propose separable lattice hidden Markov models, in which multiple hidden state sequences interact to model the observation on a lattice. The proposed model can be efficiently applied for modeling images, image sequences, 3-D object models and higher dimensional applications, due to the composite structure of Markov chains which reduces the complexity while retaining good properties for multi-dimensional data. In case of 2-D lattices, the proposed model performs an elastic matching in both horizontal and vertical directions; this makes it possible to model not only invariances to the size and location of an object but also nonlinear warping in each dimension. We present a training algorithm for separable lattice HMMs based on a variational approximation. Moreover, the deterministic annealing EM (DAEM) algorithm was applied to the variational algorithm for separable lattice HMMs. Face recognition experiments on the XM2VTS database show that the proposed model has good properties for face image modeling</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2006.1661381</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, Vol.5, p.V-V
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_1661381
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Annealing
Approximation algorithms
Computational complexity
Computer science
Educational institutions
Face recognition
Hidden Markov models
Image sequences
Lattices
Maximum likelihood estimation
title Face Recognition Based on Separable Lattice HMMS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Recognition%20Based%20on%20Separable%20Lattice%20HMMS&rft.btitle=2006%20IEEE%20International%20Conference%20on%20Acoustics%20Speech%20and%20Signal%20Processing%20Proceedings&rft.au=Kurata,%20D.&rft.date=2006&rft.volume=5&rft.spage=V&rft.epage=V&rft.pages=V-V&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9781424404698&rft.isbn_list=142440469X&rft_id=info:doi/10.1109/ICASSP.2006.1661381&rft_dat=%3Cieee_6IE%3E1661381%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_16613813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1661381&rfr_iscdi=true