Loading…
Adaptive Watermarking Model and Detection Performance Analysis
This paper presents an adaptive additive watermarking model and analyzes corresponding detection performance. With the development of watermarking technology, more and more researchers focus on the adaptive algorithms, which use the diversity embedding strength according to the host image and waterm...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 482 |
container_issue | |
container_start_page | 479 |
container_title | |
container_volume | 3 |
creator | Rongrong Ni Qiuqi Ruan |
description | This paper presents an adaptive additive watermarking model and analyzes corresponding detection performance. With the development of watermarking technology, more and more researchers focus on the adaptive algorithms, which use the diversity embedding strength according to the host image and watermark signal. These kinds of algorithms can achieve better unperceptiveness and robustness, and have become an important research branch so far. Therefore, modeling the adaptive watermarking algorithms is a very significant work. We construct a general model to describe the adaptive watermarking system in this paper. Meanwhile, the detection performance based on the normalized similarity measurement is analyzed in details. Two kinds of false possibility, i.e. the possibility of false positive and false negative, are deduced. And the relationships between them and decision threshold are given |
doi_str_mv | 10.1109/ICICIC.2006.406 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1692217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1692217</ieee_id><sourcerecordid>1692217</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-95b081b4664cf4991e2e9240c63769ad6947d4cf0a053a62080356be31f960773</originalsourceid><addsrcrecordid>eNotTk1LxDAUDIigrnv24CV_oPXl63VzEUr9WlhxDysel7R5lWhNlzYI---N6MxhYGYYhrErAaUQYG_WzS9LCYClBjxhF1ChNRIFwhlbzvMHZKjsaHPObmvvDil8E39ziaYvN32G-M6fR08Dd9HzO0rUpTBGvqWpH3MjdsTr6IbjHOZLdtq7Yablvy7Y68P9rnkqNi-P66beFEGASYU1LaxEqxF112trBUmyUkOHKn9zHq2ufI7AgVEOJaxAGWxJid4iVJVasOu_3UBE-8MU8tHjXqCVUlTqB40zRTg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Watermarking Model and Detection Performance Analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rongrong Ni ; Qiuqi Ruan</creator><creatorcontrib>Rongrong Ni ; Qiuqi Ruan</creatorcontrib><description>This paper presents an adaptive additive watermarking model and analyzes corresponding detection performance. With the development of watermarking technology, more and more researchers focus on the adaptive algorithms, which use the diversity embedding strength according to the host image and watermark signal. These kinds of algorithms can achieve better unperceptiveness and robustness, and have become an important research branch so far. Therefore, modeling the adaptive watermarking algorithms is a very significant work. We construct a general model to describe the adaptive watermarking system in this paper. Meanwhile, the detection performance based on the normalized similarity measurement is analyzed in details. Two kinds of false possibility, i.e. the possibility of false positive and false negative, are deduced. And the relationships between them and decision threshold are given</description><identifier>ISBN: 0769526160</identifier><identifier>ISBN: 9780769526164</identifier><identifier>DOI: 10.1109/ICICIC.2006.406</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive algorithm ; Adaptive systems ; Additives ; Data mining ; Data processing ; Humans ; Information security ; Performance analysis ; Robustness ; Watermarking</subject><ispartof>First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06), 2006, Vol.3, p.479-482</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1692217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1692217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rongrong Ni</creatorcontrib><creatorcontrib>Qiuqi Ruan</creatorcontrib><title>Adaptive Watermarking Model and Detection Performance Analysis</title><title>First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06)</title><addtitle>ICICIC</addtitle><description>This paper presents an adaptive additive watermarking model and analyzes corresponding detection performance. With the development of watermarking technology, more and more researchers focus on the adaptive algorithms, which use the diversity embedding strength according to the host image and watermark signal. These kinds of algorithms can achieve better unperceptiveness and robustness, and have become an important research branch so far. Therefore, modeling the adaptive watermarking algorithms is a very significant work. We construct a general model to describe the adaptive watermarking system in this paper. Meanwhile, the detection performance based on the normalized similarity measurement is analyzed in details. Two kinds of false possibility, i.e. the possibility of false positive and false negative, are deduced. And the relationships between them and decision threshold are given</description><subject>Adaptive algorithm</subject><subject>Adaptive systems</subject><subject>Additives</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Humans</subject><subject>Information security</subject><subject>Performance analysis</subject><subject>Robustness</subject><subject>Watermarking</subject><isbn>0769526160</isbn><isbn>9780769526164</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotTk1LxDAUDIigrnv24CV_oPXl63VzEUr9WlhxDysel7R5lWhNlzYI---N6MxhYGYYhrErAaUQYG_WzS9LCYClBjxhF1ChNRIFwhlbzvMHZKjsaHPObmvvDil8E39ziaYvN32G-M6fR08Dd9HzO0rUpTBGvqWpH3MjdsTr6IbjHOZLdtq7Yablvy7Y68P9rnkqNi-P66beFEGASYU1LaxEqxF112trBUmyUkOHKn9zHq2ufI7AgVEOJaxAGWxJid4iVJVasOu_3UBE-8MU8tHjXqCVUlTqB40zRTg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Rongrong Ni</creator><creator>Qiuqi Ruan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Adaptive Watermarking Model and Detection Performance Analysis</title><author>Rongrong Ni ; Qiuqi Ruan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-95b081b4664cf4991e2e9240c63769ad6947d4cf0a053a62080356be31f960773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive systems</topic><topic>Additives</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Humans</topic><topic>Information security</topic><topic>Performance analysis</topic><topic>Robustness</topic><topic>Watermarking</topic><toplevel>online_resources</toplevel><creatorcontrib>Rongrong Ni</creatorcontrib><creatorcontrib>Qiuqi Ruan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongrong Ni</au><au>Qiuqi Ruan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Watermarking Model and Detection Performance Analysis</atitle><btitle>First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06)</btitle><stitle>ICICIC</stitle><date>2006</date><risdate>2006</risdate><volume>3</volume><spage>479</spage><epage>482</epage><pages>479-482</pages><isbn>0769526160</isbn><isbn>9780769526164</isbn><abstract>This paper presents an adaptive additive watermarking model and analyzes corresponding detection performance. With the development of watermarking technology, more and more researchers focus on the adaptive algorithms, which use the diversity embedding strength according to the host image and watermark signal. These kinds of algorithms can achieve better unperceptiveness and robustness, and have become an important research branch so far. Therefore, modeling the adaptive watermarking algorithms is a very significant work. We construct a general model to describe the adaptive watermarking system in this paper. Meanwhile, the detection performance based on the normalized similarity measurement is analyzed in details. Two kinds of false possibility, i.e. the possibility of false positive and false negative, are deduced. And the relationships between them and decision threshold are given</abstract><pub>IEEE</pub><doi>10.1109/ICICIC.2006.406</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0769526160 |
ispartof | First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06), 2006, Vol.3, p.479-482 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1692217 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive algorithm Adaptive systems Additives Data mining Data processing Humans Information security Performance analysis Robustness Watermarking |
title | Adaptive Watermarking Model and Detection Performance Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Watermarking%20Model%20and%20Detection%20Performance%20Analysis&rft.btitle=First%20International%20Conference%20on%20Innovative%20Computing,%20Information%20and%20Control%20-%20Volume%20I%20(ICICIC'06)&rft.au=Rongrong%20Ni&rft.date=2006&rft.volume=3&rft.spage=479&rft.epage=482&rft.pages=479-482&rft.isbn=0769526160&rft.isbn_list=9780769526164&rft_id=info:doi/10.1109/ICICIC.2006.406&rft_dat=%3Cieee_6IE%3E1692217%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-95b081b4664cf4991e2e9240c63769ad6947d4cf0a053a62080356be31f960773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1692217&rfr_iscdi=true |