Loading…
Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching
In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 584 |
container_issue | |
container_start_page | 581 |
container_title | |
container_volume | 2 |
creator | Kirkegaard, J. Moeslund, T.B. |
description | In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion |
doi_str_mv | 10.1109/ICPR.2006.325 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1699272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699272</ieee_id><sourcerecordid>1699272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i280t-9ef3ac275eb821ef5ccc72a64f5c143f4e5b04db43ba50738aaaaf526ac0aca93</originalsourceid><addsrcrecordid>eNotjMtOwzAURC0eEqF0yYqNf8DFvvaN4yWNSlupiIrHurpxHGKgSZRkAX9PBJzNzOLMMHat5EIp6W63-f5pAVKmCw14whLItBLWWDxll9KmDgFByTOWKIlKmBTVBZsPw7ucMIgGXMJWy9iIffQfsXnjBQ2h5G3DN9Qf2yZ6_lxTF3jeNmP4GgdOTcnXPXW1WP6qDzT6elpesfOKPocw_88Ze71fveQbsXtcb_O7nYiQyVG4UGnyYDEUGahQoffeAqVmasroygQspCkLowtCaXVGExVCSl6SJ6dn7ObvN4YQDl0fj9R_H1TqHFjQPzDqTF0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</title><source>IEEE Xplore All Conference Series</source><creator>Kirkegaard, J. ; Moeslund, T.B.</creator><creatorcontrib>Kirkegaard, J. ; Moeslund, T.B.</creatorcontrib><description>In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer industry ; Computer vision ; Data mining ; Feature extraction ; Noise shaping ; Robot sensing systems ; Robotics and automation ; Service robots ; Shape</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.581-584</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kirkegaard, J.</creatorcontrib><creatorcontrib>Moeslund, T.B.</creatorcontrib><title>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion</description><subject>Application software</subject><subject>Computer industry</subject><subject>Computer vision</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Noise shaping</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>Service robots</subject><subject>Shape</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOwzAURC0eEqF0yYqNf8DFvvaN4yWNSlupiIrHurpxHGKgSZRkAX9PBJzNzOLMMHat5EIp6W63-f5pAVKmCw14whLItBLWWDxll9KmDgFByTOWKIlKmBTVBZsPw7ucMIgGXMJWy9iIffQfsXnjBQ2h5G3DN9Qf2yZ6_lxTF3jeNmP4GgdOTcnXPXW1WP6qDzT6elpesfOKPocw_88Ze71fveQbsXtcb_O7nYiQyVG4UGnyYDEUGahQoffeAqVmasroygQspCkLowtCaXVGExVCSl6SJ6dn7ObvN4YQDl0fj9R_H1TqHFjQPzDqTF0</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kirkegaard, J.</creator><creator>Moeslund, T.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</title><author>Kirkegaard, J. ; Moeslund, T.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i280t-9ef3ac275eb821ef5ccc72a64f5c143f4e5b04db43ba50738aaaaf526ac0aca93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Computer industry</topic><topic>Computer vision</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Noise shaping</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>Service robots</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kirkegaard, J.</creatorcontrib><creatorcontrib>Moeslund, T.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kirkegaard, J.</au><au>Moeslund, T.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>2</volume><spage>581</spage><epage>584</epage><pages>581-584</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.325</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.581-584 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1699272 |
source | IEEE Xplore All Conference Series |
subjects | Application software Computer industry Computer vision Data mining Feature extraction Noise shaping Robot sensing systems Robotics and automation Service robots Shape |
title | Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bin-Picking%20based%20on%20Harmonic%20Shape%20Contexts%20and%20Graph-Based%20Matching&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Kirkegaard,%20J.&rft.date=2006&rft.volume=2&rft.spage=581&rft.epage=584&rft.pages=581-584&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.325&rft_dat=%3Cieee_CHZPO%3E1699272%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i280t-9ef3ac275eb821ef5ccc72a64f5c143f4e5b04db43ba50738aaaaf526ac0aca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699272&rfr_iscdi=true |