Loading…

Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching

In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These...

Full description

Saved in:
Bibliographic Details
Main Authors: Kirkegaard, J., Moeslund, T.B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 584
container_issue
container_start_page 581
container_title
container_volume 2
creator Kirkegaard, J.
Moeslund, T.B.
description In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion
doi_str_mv 10.1109/ICPR.2006.325
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1699272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699272</ieee_id><sourcerecordid>1699272</sourcerecordid><originalsourceid>FETCH-LOGICAL-i280t-9ef3ac275eb821ef5ccc72a64f5c143f4e5b04db43ba50738aaaaf526ac0aca93</originalsourceid><addsrcrecordid>eNotjMtOwzAURC0eEqF0yYqNf8DFvvaN4yWNSlupiIrHurpxHGKgSZRkAX9PBJzNzOLMMHat5EIp6W63-f5pAVKmCw14whLItBLWWDxll9KmDgFByTOWKIlKmBTVBZsPw7ucMIgGXMJWy9iIffQfsXnjBQ2h5G3DN9Qf2yZ6_lxTF3jeNmP4GgdOTcnXPXW1WP6qDzT6elpesfOKPocw_88Ze71fveQbsXtcb_O7nYiQyVG4UGnyYDEUGahQoffeAqVmasroygQspCkLowtCaXVGExVCSl6SJ6dn7ObvN4YQDl0fj9R_H1TqHFjQPzDqTF0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</title><source>IEEE Xplore All Conference Series</source><creator>Kirkegaard, J. ; Moeslund, T.B.</creator><creatorcontrib>Kirkegaard, J. ; Moeslund, T.B.</creatorcontrib><description>In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.325</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer industry ; Computer vision ; Data mining ; Feature extraction ; Noise shaping ; Robot sensing systems ; Robotics and automation ; Service robots ; Shape</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.581-584</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kirkegaard, J.</creatorcontrib><creatorcontrib>Moeslund, T.B.</creatorcontrib><title>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion</description><subject>Application software</subject><subject>Computer industry</subject><subject>Computer vision</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Noise shaping</subject><subject>Robot sensing systems</subject><subject>Robotics and automation</subject><subject>Service robots</subject><subject>Shape</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtOwzAURC0eEqF0yYqNf8DFvvaN4yWNSlupiIrHurpxHGKgSZRkAX9PBJzNzOLMMHat5EIp6W63-f5pAVKmCw14whLItBLWWDxll9KmDgFByTOWKIlKmBTVBZsPw7ucMIgGXMJWy9iIffQfsXnjBQ2h5G3DN9Qf2yZ6_lxTF3jeNmP4GgdOTcnXPXW1WP6qDzT6elpesfOKPocw_88Ze71fveQbsXtcb_O7nYiQyVG4UGnyYDEUGahQoffeAqVmasroygQspCkLowtCaXVGExVCSl6SJ6dn7ObvN4YQDl0fj9R_H1TqHFjQPzDqTF0</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kirkegaard, J.</creator><creator>Moeslund, T.B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</title><author>Kirkegaard, J. ; Moeslund, T.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i280t-9ef3ac275eb821ef5ccc72a64f5c143f4e5b04db43ba50738aaaaf526ac0aca93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Application software</topic><topic>Computer industry</topic><topic>Computer vision</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Noise shaping</topic><topic>Robot sensing systems</topic><topic>Robotics and automation</topic><topic>Service robots</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Kirkegaard, J.</creatorcontrib><creatorcontrib>Moeslund, T.B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kirkegaard, J.</au><au>Moeslund, T.B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>2</volume><spage>581</spage><epage>584</epage><pages>581-584</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>In this work we address the general bin-picking problem where 3D data is available. We apply harmonic shape contexts (HSC) features since these are invariant to translation, scale, and 3D rotation. Each object is divided into a number of sub-models each represented by a number of HSC features. These are compared with HSC features extracted in the current data using a graph-based scheme. Results show that the approach is somewhat sensitive to noise, but works in presence of occlusion</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.325</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.2, p.581-584
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1699272
source IEEE Xplore All Conference Series
subjects Application software
Computer industry
Computer vision
Data mining
Feature extraction
Noise shaping
Robot sensing systems
Robotics and automation
Service robots
Shape
title Bin-Picking based on Harmonic Shape Contexts and Graph-Based Matching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bin-Picking%20based%20on%20Harmonic%20Shape%20Contexts%20and%20Graph-Based%20Matching&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Kirkegaard,%20J.&rft.date=2006&rft.volume=2&rft.spage=581&rft.epage=584&rft.pages=581-584&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.325&rft_dat=%3Cieee_CHZPO%3E1699272%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i280t-9ef3ac275eb821ef5ccc72a64f5c143f4e5b04db43ba50738aaaaf526ac0aca93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699272&rfr_iscdi=true