Loading…

Local Variance Driven Self-Organization for Unsupervised Clustering

We propose a new, novel unsupervised clustering technique based on traditional Kohonen self organization, competitive Hebbian learning (CHL), and the Hebbian based maximum eigenfilter (HME). This method fits into the family of dynamic self-generating, self-organizing map (SOM) algorithms. The approa...

Full description

Saved in:
Bibliographic Details
Main Authors: Kyan, M., Ling Guan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 424
container_issue
container_start_page 421
container_title
container_volume 3
creator Kyan, M.
Ling Guan
description We propose a new, novel unsupervised clustering technique based on traditional Kohonen self organization, competitive Hebbian learning (CHL), and the Hebbian based maximum eigenfilter (HME). This method fits into the family of dynamic self-generating, self-organizing map (SOM) algorithms. The approach uses a vigilance based, global parsing strategy as a guide for the hierarchical partitioning of an underlying data distribution into a set of dominant prototypes: each consisting of a dual memory element for the online estimation of both position and maximal local variance. A co-operative scheme exploits the interplay between global vigilance and maximal local variance such that an informed choice may be made regarding insertion sites for new nodes into the map. The network is related to self-organizing tree maps (SOTM), growing neural gas (GNG) and their variants. A framework is presented and performance demonstrated against GNG
doi_str_mv 10.1109/ICPR.2006.772
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699554</ieee_id><sourcerecordid>1699554</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1788239d519c0370d416420cbadaea0f34107f71613465cdc138918c1ac1f34d3</originalsourceid><addsrcrecordid>eNotj81KAzEYRYM_YK1dunIzL5Dx-_I7WcpotTBQUeu2xCRTIuNMSaYFfXoH9G7u4sDlXEKuEUpEMLer-vmlZACq1JqdkBmrOFIttDwll6CVkUwyhDMyQ5BIhZJ4QRY5f8IUIaVgZkbqZnC2K95tirZ3obhP8Rj64jV0LV2nne3jjx3j0BftkIpNnw_7kI4xB1_U3SGPIcV-d0XOW9vlsPjvOdksH97qJ9qsH1f1XUMjajlS1FXFuPESjQOuwQtUgoH7sN4GCy0XCLrVqJBPrs475JXByqF1OEHP5-TmbzeGELb7FL9s-t6iMmY6w38By7BK-A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Local Variance Driven Self-Organization for Unsupervised Clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kyan, M. ; Ling Guan</creator><creatorcontrib>Kyan, M. ; Ling Guan</creatorcontrib><description>We propose a new, novel unsupervised clustering technique based on traditional Kohonen self organization, competitive Hebbian learning (CHL), and the Hebbian based maximum eigenfilter (HME). This method fits into the family of dynamic self-generating, self-organizing map (SOM) algorithms. The approach uses a vigilance based, global parsing strategy as a guide for the hierarchical partitioning of an underlying data distribution into a set of dominant prototypes: each consisting of a dual memory element for the online estimation of both position and maximal local variance. A co-operative scheme exploits the interplay between global vigilance and maximal local variance such that an informed choice may be made regarding insertion sites for new nodes into the map. The network is related to self-organizing tree maps (SOTM), growing neural gas (GNG) and their variants. A framework is presented and performance demonstrated against GNG</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.772</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bioinformatics ; Clustering algorithms ; Data mining ; Genetics ; Hebbian theory ; Mining industry ; Partitioning algorithms ; Pattern recognition ; Prototypes ; Unsupervised learning</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.421-424</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kyan, M.</creatorcontrib><creatorcontrib>Ling Guan</creatorcontrib><title>Local Variance Driven Self-Organization for Unsupervised Clustering</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>We propose a new, novel unsupervised clustering technique based on traditional Kohonen self organization, competitive Hebbian learning (CHL), and the Hebbian based maximum eigenfilter (HME). This method fits into the family of dynamic self-generating, self-organizing map (SOM) algorithms. The approach uses a vigilance based, global parsing strategy as a guide for the hierarchical partitioning of an underlying data distribution into a set of dominant prototypes: each consisting of a dual memory element for the online estimation of both position and maximal local variance. A co-operative scheme exploits the interplay between global vigilance and maximal local variance such that an informed choice may be made regarding insertion sites for new nodes into the map. The network is related to self-organizing tree maps (SOTM), growing neural gas (GNG) and their variants. A framework is presented and performance demonstrated against GNG</description><subject>Bioinformatics</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Genetics</subject><subject>Hebbian theory</subject><subject>Mining industry</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Prototypes</subject><subject>Unsupervised learning</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEYRYM_YK1dunIzL5Dx-_I7WcpotTBQUeu2xCRTIuNMSaYFfXoH9G7u4sDlXEKuEUpEMLer-vmlZACq1JqdkBmrOFIttDwll6CVkUwyhDMyQ5BIhZJ4QRY5f8IUIaVgZkbqZnC2K95tirZ3obhP8Rj64jV0LV2nne3jjx3j0BftkIpNnw_7kI4xB1_U3SGPIcV-d0XOW9vlsPjvOdksH97qJ9qsH1f1XUMjajlS1FXFuPESjQOuwQtUgoH7sN4GCy0XCLrVqJBPrs475JXByqF1OEHP5-TmbzeGELb7FL9s-t6iMmY6w38By7BK-A</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Kyan, M.</creator><creator>Ling Guan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Local Variance Driven Self-Organization for Unsupervised Clustering</title><author>Kyan, M. ; Ling Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1788239d519c0370d416420cbadaea0f34107f71613465cdc138918c1ac1f34d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bioinformatics</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Genetics</topic><topic>Hebbian theory</topic><topic>Mining industry</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Prototypes</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyan, M.</creatorcontrib><creatorcontrib>Ling Guan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyan, M.</au><au>Ling Guan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Local Variance Driven Self-Organization for Unsupervised Clustering</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>3</volume><spage>421</spage><epage>424</epage><pages>421-424</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>We propose a new, novel unsupervised clustering technique based on traditional Kohonen self organization, competitive Hebbian learning (CHL), and the Hebbian based maximum eigenfilter (HME). This method fits into the family of dynamic self-generating, self-organizing map (SOM) algorithms. The approach uses a vigilance based, global parsing strategy as a guide for the hierarchical partitioning of an underlying data distribution into a set of dominant prototypes: each consisting of a dual memory element for the online estimation of both position and maximal local variance. A co-operative scheme exploits the interplay between global vigilance and maximal local variance such that an informed choice may be made regarding insertion sites for new nodes into the map. The network is related to self-organizing tree maps (SOTM), growing neural gas (GNG) and their variants. A framework is presented and performance demonstrated against GNG</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.772</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-4651
ispartof 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.421-424
issn 1051-4651
2831-7475
language eng
recordid cdi_ieee_primary_1699554
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bioinformatics
Clustering algorithms
Data mining
Genetics
Hebbian theory
Mining industry
Partitioning algorithms
Pattern recognition
Prototypes
Unsupervised learning
title Local Variance Driven Self-Organization for Unsupervised Clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Local%20Variance%20Driven%20Self-Organization%20for%20Unsupervised%20Clustering&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Kyan,%20M.&rft.date=2006&rft.volume=3&rft.spage=421&rft.epage=424&rft.pages=421-424&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.772&rft_dat=%3Cieee_6IE%3E1699554%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1788239d519c0370d416420cbadaea0f34107f71613465cdc138918c1ac1f34d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699554&rfr_iscdi=true