Loading…
Palmprint Identification using Boosting Local Binary Pattern
Local binary pattern (LBP) is a powerful texture descriptor that is gray-scale and rotation invariant according to T. Ojala et al. (2002). Because texture is one of the most clearly observable features in low-resolution palmprint images, we think local binary pattern based features are very discrimi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c219t-264b83ebfcf27f0531866d5d9c078b7b8e72334f9f6bf4d102b48560bda418c23 |
---|---|
cites | |
container_end_page | 506 |
container_issue | |
container_start_page | 503 |
container_title | |
container_volume | 3 |
creator | Xianji Wang Haifeng Gong Hao Zhang Bin Li Zhenquan Zhuang |
description | Local binary pattern (LBP) is a powerful texture descriptor that is gray-scale and rotation invariant according to T. Ojala et al. (2002). Because texture is one of the most clearly observable features in low-resolution palmprint images, we think local binary pattern based features are very discriminative for palmprint identification. In this paper, we propose a palmprint identification approach using boosted local binary pattern based classifiers. The palmprint area is scanned with a scalable sub-window from which local binary pattern histograms are extracted to represent the local features of a palmprint image. The multi-class problem is transformed into a two-class one of intra- and extra-class by classifying every pair of palmprint images as intra-class or extra-class ones in the work of B. Moghaddam et al. (1996). We use the AdaBoost algorithm in the work of Y. Freund and R.E. Schapire (1997) to select those sub-windows that are more discriminative for classification. Weak classifiers are constructed based on the Chi square distance between two corresponding local binary pattern histograms. Experiments on the UST-HK palmprint database show competitive performance |
doi_str_mv | 10.1109/ICPR.2006.912 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1699574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1699574</ieee_id><sourcerecordid>1699574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-264b83ebfcf27f0531866d5d9c078b7b8e72334f9f6bf4d102b48560bda418c23</originalsourceid><addsrcrecordid>eNotjstKxDAYRoMXsI6zdOWmL9CaP_eAG6eMWihYRNdDkiYS6aTSxoVvb0XP5jurj4PQNeAaAOvbtulfaoKxqDWQE1QQRaGSTPJTdIml0JxwAvgMFYA5VExwuEDbZfnAK4xzRnSB7nozHj_nmHLZDj7lGKIzOU6p_Fpiei9307TkX-kmZ8ZyF5OZv8ve5OzndIXOgxkXv_3fDXp72L82T1X3_Ng2913lCOhcEcGsot4GF4gMmFNQQgx80A5LZaVVXhJKWdBB2MAGwMQyxQW2g2GgHKEbdPP3G733h7X2uEYcQGjNJaM_rvtI-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Palmprint Identification using Boosting Local Binary Pattern</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xianji Wang ; Haifeng Gong ; Hao Zhang ; Bin Li ; Zhenquan Zhuang</creator><creatorcontrib>Xianji Wang ; Haifeng Gong ; Hao Zhang ; Bin Li ; Zhenquan Zhuang</creatorcontrib><description>Local binary pattern (LBP) is a powerful texture descriptor that is gray-scale and rotation invariant according to T. Ojala et al. (2002). Because texture is one of the most clearly observable features in low-resolution palmprint images, we think local binary pattern based features are very discriminative for palmprint identification. In this paper, we propose a palmprint identification approach using boosted local binary pattern based classifiers. The palmprint area is scanned with a scalable sub-window from which local binary pattern histograms are extracted to represent the local features of a palmprint image. The multi-class problem is transformed into a two-class one of intra- and extra-class by classifying every pair of palmprint images as intra-class or extra-class ones in the work of B. Moghaddam et al. (1996). We use the AdaBoost algorithm in the work of Y. Freund and R.E. Schapire (1997) to select those sub-windows that are more discriminative for classification. Weak classifiers are constructed based on the Chi square distance between two corresponding local binary pattern histograms. Experiments on the UST-HK palmprint database show competitive performance</description><identifier>ISSN: 1051-4651</identifier><identifier>ISBN: 0769525210</identifier><identifier>ISBN: 9780769525211</identifier><identifier>EISSN: 2831-7475</identifier><identifier>DOI: 10.1109/ICPR.2006.912</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biometrics ; Boosting ; Fingerprint recognition ; Gray-scale ; Histograms ; Humans ; Image databases ; Iris ; Pixel ; Spatial databases</subject><ispartof>18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.503-506</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-264b83ebfcf27f0531866d5d9c078b7b8e72334f9f6bf4d102b48560bda418c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1699574$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1699574$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xianji Wang</creatorcontrib><creatorcontrib>Haifeng Gong</creatorcontrib><creatorcontrib>Hao Zhang</creatorcontrib><creatorcontrib>Bin Li</creatorcontrib><creatorcontrib>Zhenquan Zhuang</creatorcontrib><title>Palmprint Identification using Boosting Local Binary Pattern</title><title>18th International Conference on Pattern Recognition (ICPR'06)</title><addtitle>ICPR</addtitle><description>Local binary pattern (LBP) is a powerful texture descriptor that is gray-scale and rotation invariant according to T. Ojala et al. (2002). Because texture is one of the most clearly observable features in low-resolution palmprint images, we think local binary pattern based features are very discriminative for palmprint identification. In this paper, we propose a palmprint identification approach using boosted local binary pattern based classifiers. The palmprint area is scanned with a scalable sub-window from which local binary pattern histograms are extracted to represent the local features of a palmprint image. The multi-class problem is transformed into a two-class one of intra- and extra-class by classifying every pair of palmprint images as intra-class or extra-class ones in the work of B. Moghaddam et al. (1996). We use the AdaBoost algorithm in the work of Y. Freund and R.E. Schapire (1997) to select those sub-windows that are more discriminative for classification. Weak classifiers are constructed based on the Chi square distance between two corresponding local binary pattern histograms. Experiments on the UST-HK palmprint database show competitive performance</description><subject>Biometrics</subject><subject>Boosting</subject><subject>Fingerprint recognition</subject><subject>Gray-scale</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image databases</subject><subject>Iris</subject><subject>Pixel</subject><subject>Spatial databases</subject><issn>1051-4651</issn><issn>2831-7475</issn><isbn>0769525210</isbn><isbn>9780769525211</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKxDAYRoMXsI6zdOWmL9CaP_eAG6eMWihYRNdDkiYS6aTSxoVvb0XP5jurj4PQNeAaAOvbtulfaoKxqDWQE1QQRaGSTPJTdIml0JxwAvgMFYA5VExwuEDbZfnAK4xzRnSB7nozHj_nmHLZDj7lGKIzOU6p_Fpiei9307TkX-kmZ8ZyF5OZv8ve5OzndIXOgxkXv_3fDXp72L82T1X3_Ng2913lCOhcEcGsot4GF4gMmFNQQgx80A5LZaVVXhJKWdBB2MAGwMQyxQW2g2GgHKEbdPP3G733h7X2uEYcQGjNJaM_rvtI-g</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Xianji Wang</creator><creator>Haifeng Gong</creator><creator>Hao Zhang</creator><creator>Bin Li</creator><creator>Zhenquan Zhuang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2006</creationdate><title>Palmprint Identification using Boosting Local Binary Pattern</title><author>Xianji Wang ; Haifeng Gong ; Hao Zhang ; Bin Li ; Zhenquan Zhuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-264b83ebfcf27f0531866d5d9c078b7b8e72334f9f6bf4d102b48560bda418c23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biometrics</topic><topic>Boosting</topic><topic>Fingerprint recognition</topic><topic>Gray-scale</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image databases</topic><topic>Iris</topic><topic>Pixel</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Xianji Wang</creatorcontrib><creatorcontrib>Haifeng Gong</creatorcontrib><creatorcontrib>Hao Zhang</creatorcontrib><creatorcontrib>Bin Li</creatorcontrib><creatorcontrib>Zhenquan Zhuang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xianji Wang</au><au>Haifeng Gong</au><au>Hao Zhang</au><au>Bin Li</au><au>Zhenquan Zhuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Palmprint Identification using Boosting Local Binary Pattern</atitle><btitle>18th International Conference on Pattern Recognition (ICPR'06)</btitle><stitle>ICPR</stitle><date>2006</date><risdate>2006</risdate><volume>3</volume><spage>503</spage><epage>506</epage><pages>503-506</pages><issn>1051-4651</issn><eissn>2831-7475</eissn><isbn>0769525210</isbn><isbn>9780769525211</isbn><abstract>Local binary pattern (LBP) is a powerful texture descriptor that is gray-scale and rotation invariant according to T. Ojala et al. (2002). Because texture is one of the most clearly observable features in low-resolution palmprint images, we think local binary pattern based features are very discriminative for palmprint identification. In this paper, we propose a palmprint identification approach using boosted local binary pattern based classifiers. The palmprint area is scanned with a scalable sub-window from which local binary pattern histograms are extracted to represent the local features of a palmprint image. The multi-class problem is transformed into a two-class one of intra- and extra-class by classifying every pair of palmprint images as intra-class or extra-class ones in the work of B. Moghaddam et al. (1996). We use the AdaBoost algorithm in the work of Y. Freund and R.E. Schapire (1997) to select those sub-windows that are more discriminative for classification. Weak classifiers are constructed based on the Chi square distance between two corresponding local binary pattern histograms. Experiments on the UST-HK palmprint database show competitive performance</abstract><pub>IEEE</pub><doi>10.1109/ICPR.2006.912</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-4651 |
ispartof | 18th International Conference on Pattern Recognition (ICPR'06), 2006, Vol.3, p.503-506 |
issn | 1051-4651 2831-7475 |
language | eng |
recordid | cdi_ieee_primary_1699574 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biometrics Boosting Fingerprint recognition Gray-scale Histograms Humans Image databases Iris Pixel Spatial databases |
title | Palmprint Identification using Boosting Local Binary Pattern |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Palmprint%20Identification%20using%20Boosting%20Local%20Binary%20Pattern&rft.btitle=18th%20International%20Conference%20on%20Pattern%20Recognition%20(ICPR'06)&rft.au=Xianji%20Wang&rft.date=2006&rft.volume=3&rft.spage=503&rft.epage=506&rft.pages=503-506&rft.issn=1051-4651&rft.eissn=2831-7475&rft.isbn=0769525210&rft.isbn_list=9780769525211&rft_id=info:doi/10.1109/ICPR.2006.912&rft_dat=%3Cieee_6IE%3E1699574%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-264b83ebfcf27f0531866d5d9c078b7b8e72334f9f6bf4d102b48560bda418c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1699574&rfr_iscdi=true |