Loading…

A Scalable FPGA Implementation of Cellular Neural Networks for Gabor-type Filtering

We describe an implementation of Gabor-type filters on field programmable gate arrays using the cellular neural network (CNN) architecture. The CNN template depends upon the parameters (e.g., orientation, bandwidth) of the Gabor-type filter and can be modified at runtime so that the functionality of...

Full description

Saved in:
Bibliographic Details
Main Authors: Cheung, O.Y.H., Leong, P.H.W., Tsang, E.K.C., Shi, B.E.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 20
container_issue
container_start_page 15
container_title
container_volume
creator Cheung, O.Y.H.
Leong, P.H.W.
Tsang, E.K.C.
Shi, B.E.
description We describe an implementation of Gabor-type filters on field programmable gate arrays using the cellular neural network (CNN) architecture. The CNN template depends upon the parameters (e.g., orientation, bandwidth) of the Gabor-type filter and can be modified at runtime so that the functionality of Gabor-type filter can be changed dynamically. Our implementation uses the Euler method to solve the ordinary differential equation describing the CNN. The design is scalable to allow for different pixel array sizes, as well as simultaneous computation of multiple filter outputs tuned to different orientations and bandwidths. For 1024 pixel frames, an implementation on a Xilinx Virtex XC2V1000-4 device uses 1842 slices, operates at 120 MHz and achieves 23,000 Euler iterations over one frame per second.
doi_str_mv 10.1109/IJCNN.2006.246653
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_1716064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1716064</ieee_id><sourcerecordid>1716064</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f0d901ce9d08bff54de20c7a2f9bc58ff1d492594cb15ed4898a96740a4f542d3</originalsourceid><addsrcrecordid>eNo1jNtKw0AURQcvYK39APFlfiD1zCWTnMcQbK2UKlSfyyQ5I9HJhUmK9O8bUGHDethrb8buBSyFAHzcvOS73VICmKXUxsTqgs2kMCLSGpJLtsAkhSkKNYK8-u8Uqht2OwxfAFIhqhnbZ3xfWm8LT3z1ts74puk9NdSOdqy7lneO5-T90dvAd3QM1k8Yf7rwPXDXBb62RRei8dRP89qPFOr2845dO-sHWvxxzj5WT-_5c7R9XW_ybBvVIonHyEGFIErCCtLCuVhXJKFMrHRYlHHqnKg0yhh1WYiYKp1iatEkGqyeZFmpOXv4_a2J6NCHurHhdBCJMGC0OgM-vFHx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Scalable FPGA Implementation of Cellular Neural Networks for Gabor-type Filtering</title><source>IEEE Xplore All Conference Series</source><creator>Cheung, O.Y.H. ; Leong, P.H.W. ; Tsang, E.K.C. ; Shi, B.E.</creator><creatorcontrib>Cheung, O.Y.H. ; Leong, P.H.W. ; Tsang, E.K.C. ; Shi, B.E.</creatorcontrib><description>We describe an implementation of Gabor-type filters on field programmable gate arrays using the cellular neural network (CNN) architecture. The CNN template depends upon the parameters (e.g., orientation, bandwidth) of the Gabor-type filter and can be modified at runtime so that the functionality of Gabor-type filter can be changed dynamically. Our implementation uses the Euler method to solve the ordinary differential equation describing the CNN. The design is scalable to allow for different pixel array sizes, as well as simultaneous computation of multiple filter outputs tuned to different orientations and bandwidths. For 1024 pixel frames, an implementation on a Xilinx Virtex XC2V1000-4 device uses 1842 slices, operates at 120 MHz and achieves 23,000 Euler iterations over one frame per second.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 9780780394902</identifier><identifier>ISBN: 0780394909</identifier><identifier>EISSN: 2161-4407</identifier><identifier>DOI: 10.1109/IJCNN.2006.246653</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Biology computing ; Biomedical signal processing ; Cellular neural networks ; Energy consumption ; Field programmable gate arrays ; Gabor filters ; Retina ; Very large scale integration ; Visual system</subject><ispartof>The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, p.15-20</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1716064$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,4049,4050,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1716064$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheung, O.Y.H.</creatorcontrib><creatorcontrib>Leong, P.H.W.</creatorcontrib><creatorcontrib>Tsang, E.K.C.</creatorcontrib><creatorcontrib>Shi, B.E.</creatorcontrib><title>A Scalable FPGA Implementation of Cellular Neural Networks for Gabor-type Filtering</title><title>The 2006 IEEE International Joint Conference on Neural Network Proceedings</title><addtitle>IJCNN</addtitle><description>We describe an implementation of Gabor-type filters on field programmable gate arrays using the cellular neural network (CNN) architecture. The CNN template depends upon the parameters (e.g., orientation, bandwidth) of the Gabor-type filter and can be modified at runtime so that the functionality of Gabor-type filter can be changed dynamically. Our implementation uses the Euler method to solve the ordinary differential equation describing the CNN. The design is scalable to allow for different pixel array sizes, as well as simultaneous computation of multiple filter outputs tuned to different orientations and bandwidths. For 1024 pixel frames, an implementation on a Xilinx Virtex XC2V1000-4 device uses 1842 slices, operates at 120 MHz and achieves 23,000 Euler iterations over one frame per second.</description><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Biomedical signal processing</subject><subject>Cellular neural networks</subject><subject>Energy consumption</subject><subject>Field programmable gate arrays</subject><subject>Gabor filters</subject><subject>Retina</subject><subject>Very large scale integration</subject><subject>Visual system</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>9780780394902</isbn><isbn>0780394909</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1jNtKw0AURQcvYK39APFlfiD1zCWTnMcQbK2UKlSfyyQ5I9HJhUmK9O8bUGHDethrb8buBSyFAHzcvOS73VICmKXUxsTqgs2kMCLSGpJLtsAkhSkKNYK8-u8Uqht2OwxfAFIhqhnbZ3xfWm8LT3z1ts74puk9NdSOdqy7lneO5-T90dvAd3QM1k8Yf7rwPXDXBb62RRei8dRP89qPFOr2845dO-sHWvxxzj5WT-_5c7R9XW_ybBvVIonHyEGFIErCCtLCuVhXJKFMrHRYlHHqnKg0yhh1WYiYKp1iatEkGqyeZFmpOXv4_a2J6NCHurHhdBCJMGC0OgM-vFHx</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Cheung, O.Y.H.</creator><creator>Leong, P.H.W.</creator><creator>Tsang, E.K.C.</creator><creator>Shi, B.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2006</creationdate><title>A Scalable FPGA Implementation of Cellular Neural Networks for Gabor-type Filtering</title><author>Cheung, O.Y.H. ; Leong, P.H.W. ; Tsang, E.K.C. ; Shi, B.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f0d901ce9d08bff54de20c7a2f9bc58ff1d492594cb15ed4898a96740a4f542d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Biomedical signal processing</topic><topic>Cellular neural networks</topic><topic>Energy consumption</topic><topic>Field programmable gate arrays</topic><topic>Gabor filters</topic><topic>Retina</topic><topic>Very large scale integration</topic><topic>Visual system</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheung, O.Y.H.</creatorcontrib><creatorcontrib>Leong, P.H.W.</creatorcontrib><creatorcontrib>Tsang, E.K.C.</creatorcontrib><creatorcontrib>Shi, B.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheung, O.Y.H.</au><au>Leong, P.H.W.</au><au>Tsang, E.K.C.</au><au>Shi, B.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Scalable FPGA Implementation of Cellular Neural Networks for Gabor-type Filtering</atitle><btitle>The 2006 IEEE International Joint Conference on Neural Network Proceedings</btitle><stitle>IJCNN</stitle><date>2006</date><risdate>2006</risdate><spage>15</spage><epage>20</epage><pages>15-20</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>9780780394902</isbn><isbn>0780394909</isbn><abstract>We describe an implementation of Gabor-type filters on field programmable gate arrays using the cellular neural network (CNN) architecture. The CNN template depends upon the parameters (e.g., orientation, bandwidth) of the Gabor-type filter and can be modified at runtime so that the functionality of Gabor-type filter can be changed dynamically. Our implementation uses the Euler method to solve the ordinary differential equation describing the CNN. The design is scalable to allow for different pixel array sizes, as well as simultaneous computation of multiple filter outputs tuned to different orientations and bandwidths. For 1024 pixel frames, an implementation on a Xilinx Virtex XC2V1000-4 device uses 1842 slices, operates at 120 MHz and achieves 23,000 Euler iterations over one frame per second.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2006.246653</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2006 IEEE International Joint Conference on Neural Network Proceedings, 2006, p.15-20
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_1716064
source IEEE Xplore All Conference Series
subjects Biological system modeling
Biology computing
Biomedical signal processing
Cellular neural networks
Energy consumption
Field programmable gate arrays
Gabor filters
Retina
Very large scale integration
Visual system
title A Scalable FPGA Implementation of Cellular Neural Networks for Gabor-type Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Scalable%20FPGA%20Implementation%20of%20Cellular%20Neural%20Networks%20for%20Gabor-type%20Filtering&rft.btitle=The%202006%20IEEE%20International%20Joint%20Conference%20on%20Neural%20Network%20Proceedings&rft.au=Cheung,%20O.Y.H.&rft.date=2006&rft.spage=15&rft.epage=20&rft.pages=15-20&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=9780780394902&rft.isbn_list=0780394909&rft_id=info:doi/10.1109/IJCNN.2006.246653&rft_dat=%3Cieee_CHZPO%3E1716064%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f0d901ce9d08bff54de20c7a2f9bc58ff1d492594cb15ed4898a96740a4f542d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1716064&rfr_iscdi=true