Loading…
Moving average separation
A real symmetric polynomial Q(z) can be factored into the product A(z)A(z/sup -1/) if Q(z) is nonnegative on the unit circle. The authors pose a constrained minimization problem that results in the correct factorization in this case and gives an approximation to Q(z) if Q(z) does not satisfy the non...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2283 vol.4 |
container_issue | |
container_start_page | 2280 |
container_title | |
container_volume | |
creator | Feyh, G. Mullis, C.T. |
description | A real symmetric polynomial Q(z) can be factored into the product A(z)A(z/sup -1/) if Q(z) is nonnegative on the unit circle. The authors pose a constrained minimization problem that results in the correct factorization in this case and gives an approximation to Q(z) if Q(z) does not satisfy the nonnegativity condition.< > |
doi_str_mv | 10.1109/ICASSP.1988.197092 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_197092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>197092</ieee_id><sourcerecordid>197092</sourcerecordid><originalsourceid>FETCH-ieee_primary_1970923</originalsourceid><addsrcrecordid>eNpjYJAyNNAzNDSw1Pd0dgwODtAztLSwABLmBpZGTAycRsbmlrqGlgYRLAychqZGBrpmhiaWHAxcxcVZBgYGFuYmFpwMkr75ZZl56QqJZalFiempCsWpBYlFiSWZ-Xk8DKxpiTnFqbxQmptBys01xNlDNzM1NTW-oCgzN7GoMh5imTFeSQDqmSuh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Moving average separation</title><source>IEEE Xplore All Conference Series</source><creator>Feyh, G. ; Mullis, C.T.</creator><creatorcontrib>Feyh, G. ; Mullis, C.T.</creatorcontrib><description>A real symmetric polynomial Q(z) can be factored into the product A(z)A(z/sup -1/) if Q(z) is nonnegative on the unit circle. The authors pose a constrained minimization problem that results in the correct factorization in this case and gives an approximation to Q(z) if Q(z) does not satisfy the nonnegativity condition.< ></description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1988.197092</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autocorrelation ; Contracts ; Digital signal processing ; Polynomials ; Signal processing algorithms ; Student members ; Symmetric matrices ; Testing</subject><ispartof>ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, 1988, p.2280-2283 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/197092$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/197092$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feyh, G.</creatorcontrib><creatorcontrib>Mullis, C.T.</creatorcontrib><title>Moving average separation</title><title>ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>A real symmetric polynomial Q(z) can be factored into the product A(z)A(z/sup -1/) if Q(z) is nonnegative on the unit circle. The authors pose a constrained minimization problem that results in the correct factorization in this case and gives an approximation to Q(z) if Q(z) does not satisfy the nonnegativity condition.< ></description><subject>Autocorrelation</subject><subject>Contracts</subject><subject>Digital signal processing</subject><subject>Polynomials</subject><subject>Signal processing algorithms</subject><subject>Student members</subject><subject>Symmetric matrices</subject><subject>Testing</subject><issn>1520-6149</issn><issn>2379-190X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1988</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpjYJAyNNAzNDSw1Pd0dgwODtAztLSwABLmBpZGTAycRsbmlrqGlgYRLAychqZGBrpmhiaWHAxcxcVZBgYGFuYmFpwMkr75ZZl56QqJZalFiempCsWpBYlFiSWZ-Xk8DKxpiTnFqbxQmptBys01xNlDNzM1NTW-oCgzN7GoMh5imTFeSQDqmSuh</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Feyh, G.</creator><creator>Mullis, C.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1988</creationdate><title>Moving average separation</title><author>Feyh, G. ; Mullis, C.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_1970923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Autocorrelation</topic><topic>Contracts</topic><topic>Digital signal processing</topic><topic>Polynomials</topic><topic>Signal processing algorithms</topic><topic>Student members</topic><topic>Symmetric matrices</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Feyh, G.</creatorcontrib><creatorcontrib>Mullis, C.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feyh, G.</au><au>Mullis, C.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Moving average separation</atitle><btitle>ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>1988</date><risdate>1988</risdate><spage>2280</spage><epage>2283 vol.4</epage><pages>2280-2283 vol.4</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><abstract>A real symmetric polynomial Q(z) can be factored into the product A(z)A(z/sup -1/) if Q(z) is nonnegative on the unit circle. The authors pose a constrained minimization problem that results in the correct factorization in this case and gives an approximation to Q(z) if Q(z) does not satisfy the nonnegativity condition.< ></abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1988.197092</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, 1988, p.2280-2283 vol.4 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_197092 |
source | IEEE Xplore All Conference Series |
subjects | Autocorrelation Contracts Digital signal processing Polynomials Signal processing algorithms Student members Symmetric matrices Testing |
title | Moving average separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Moving%20average%20separation&rft.btitle=ICASSP-88.,%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Feyh,%20G.&rft.date=1988&rft.spage=2280&rft.epage=2283%20vol.4&rft.pages=2280-2283%20vol.4&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.1988.197092&rft_dat=%3Cieee_CHZPO%3E197092%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_1970923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=197092&rfr_iscdi=true |