Loading…

Genetic and learning automata algorithms for adaptive digital filters

Two different approaches to adaptive digital filtering based on learning algorithms are presented in detail. The first approach is based on stochastic learning automata where the discretized values of a parameter(s) form the actions of a learning automata which then obtains the optimal parameter set...

Full description

Saved in:
Bibliographic Details
Main Authors: Nambiar, R., Tang, C.K.K., Mars, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 44 vol.4
container_issue
container_start_page 41
container_title
container_volume 4
creator Nambiar, R.
Tang, C.K.K.
Mars, P.
description Two different approaches to adaptive digital filtering based on learning algorithms are presented in detail. The first approach is based on stochastic learning automata where the discretized values of a parameter(s) form the actions of a learning automata which then obtains the optimal parameter setting using a suitably defined error function as the feedback from the environment. The authors detail the use of improved learning schemes published elsewhere and also point out the basic shortcoming of this approach. The second approach is based on genetic algorithms (GAs). GAs have been used in the context of multiparameter optimization. Simulation results are presented to show how this approach is able to tackle the problems of dimensionality when adapting high-order filters. The effect of the differential parameters of a GA on the learning process is also demonstrated. Comparative results between a pure random search algorithm and the GA are also presented.< >
doi_str_mv 10.1109/ICASSP.1992.226416
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_226416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>226416</ieee_id><sourcerecordid>226416</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-1fa420eba537b88e6e0cf57c84bac52f2711805b597e33fbe659ae42965759ac3</originalsourceid><addsrcrecordid>eNotUNtKw0AUXLyAoeYH-rQ_kLj3zT5KqVUoKFTBt3KSnI0ruZTNKvj3BtphYOZpZhhC1pyVnDP38LJ5PBzeSu6cKIUwipsrkglpXcEd-7wmubMVWyiZlqK6IRnXghWGK3dH8nn-ZguU5laJjGx3OGIKDYWxpT1CHMPYUfhJ0wAJKPTdFEP6Gmbqp0ihhVMKv0jb0IUEPfWhTxjne3LroZ8xv-iKfDxt3zfPxf51t6zdF2FpSwX3oATDGrS0dVWhQdZ4bZtK1dBo4YXlvGK61s6ilL5Gox2gEs5ou7hGrsj6nBsQ8XiKYYD4dzx_IP8B4eROjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic and learning automata algorithms for adaptive digital filters</title><source>IEEE Xplore All Conference Series</source><creator>Nambiar, R. ; Tang, C.K.K. ; Mars, P.</creator><creatorcontrib>Nambiar, R. ; Tang, C.K.K. ; Mars, P.</creatorcontrib><description>Two different approaches to adaptive digital filtering based on learning algorithms are presented in detail. The first approach is based on stochastic learning automata where the discretized values of a parameter(s) form the actions of a learning automata which then obtains the optimal parameter setting using a suitably defined error function as the feedback from the environment. The authors detail the use of improved learning schemes published elsewhere and also point out the basic shortcoming of this approach. The second approach is based on genetic algorithms (GAs). GAs have been used in the context of multiparameter optimization. Simulation results are presented to show how this approach is able to tackle the problems of dimensionality when adapting high-order filters. The effect of the differential parameters of a GA on the learning process is also demonstrated. Comparative results between a pure random search algorithm and the GA are also presented.&lt; &gt;</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780305328</identifier><identifier>ISBN: 0780305329</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.1992.226416</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; Digital filters ; Filtering algorithms ; Finite impulse response filter ; Genetics ; IIR filters ; Learning automata ; Least squares methods ; Stability ; Stochastic processes</subject><ispartof>[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992, Vol.4, p.41-44 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/226416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/226416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nambiar, R.</creatorcontrib><creatorcontrib>Tang, C.K.K.</creatorcontrib><creatorcontrib>Mars, P.</creatorcontrib><title>Genetic and learning automata algorithms for adaptive digital filters</title><title>[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing</title><addtitle>ICASSP</addtitle><description>Two different approaches to adaptive digital filtering based on learning algorithms are presented in detail. The first approach is based on stochastic learning automata where the discretized values of a parameter(s) form the actions of a learning automata which then obtains the optimal parameter setting using a suitably defined error function as the feedback from the environment. The authors detail the use of improved learning schemes published elsewhere and also point out the basic shortcoming of this approach. The second approach is based on genetic algorithms (GAs). GAs have been used in the context of multiparameter optimization. Simulation results are presented to show how this approach is able to tackle the problems of dimensionality when adapting high-order filters. The effect of the differential parameters of a GA on the learning process is also demonstrated. Comparative results between a pure random search algorithm and the GA are also presented.&lt; &gt;</description><subject>Adaptive filters</subject><subject>Digital filters</subject><subject>Filtering algorithms</subject><subject>Finite impulse response filter</subject><subject>Genetics</subject><subject>IIR filters</subject><subject>Learning automata</subject><subject>Least squares methods</subject><subject>Stability</subject><subject>Stochastic processes</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780305328</isbn><isbn>0780305329</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUNtKw0AUXLyAoeYH-rQ_kLj3zT5KqVUoKFTBt3KSnI0ruZTNKvj3BtphYOZpZhhC1pyVnDP38LJ5PBzeSu6cKIUwipsrkglpXcEd-7wmubMVWyiZlqK6IRnXghWGK3dH8nn-ZguU5laJjGx3OGIKDYWxpT1CHMPYUfhJ0wAJKPTdFEP6Gmbqp0ihhVMKv0jb0IUEPfWhTxjne3LroZ8xv-iKfDxt3zfPxf51t6zdF2FpSwX3oATDGrS0dVWhQdZ4bZtK1dBo4YXlvGK61s6ilL5Gox2gEs5ou7hGrsj6nBsQ8XiKYYD4dzx_IP8B4eROjQ</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Nambiar, R.</creator><creator>Tang, C.K.K.</creator><creator>Mars, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>Genetic and learning automata algorithms for adaptive digital filters</title><author>Nambiar, R. ; Tang, C.K.K. ; Mars, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-1fa420eba537b88e6e0cf57c84bac52f2711805b597e33fbe659ae42965759ac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adaptive filters</topic><topic>Digital filters</topic><topic>Filtering algorithms</topic><topic>Finite impulse response filter</topic><topic>Genetics</topic><topic>IIR filters</topic><topic>Learning automata</topic><topic>Least squares methods</topic><topic>Stability</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Nambiar, R.</creatorcontrib><creatorcontrib>Tang, C.K.K.</creatorcontrib><creatorcontrib>Mars, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nambiar, R.</au><au>Tang, C.K.K.</au><au>Mars, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic and learning automata algorithms for adaptive digital filters</atitle><btitle>[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing</btitle><stitle>ICASSP</stitle><date>1992</date><risdate>1992</risdate><volume>4</volume><spage>41</spage><epage>44 vol.4</epage><pages>41-44 vol.4</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780305328</isbn><isbn>0780305329</isbn><abstract>Two different approaches to adaptive digital filtering based on learning algorithms are presented in detail. The first approach is based on stochastic learning automata where the discretized values of a parameter(s) form the actions of a learning automata which then obtains the optimal parameter setting using a suitably defined error function as the feedback from the environment. The authors detail the use of improved learning schemes published elsewhere and also point out the basic shortcoming of this approach. The second approach is based on genetic algorithms (GAs). GAs have been used in the context of multiparameter optimization. Simulation results are presented to show how this approach is able to tackle the problems of dimensionality when adapting high-order filters. The effect of the differential parameters of a GA on the learning process is also demonstrated. Comparative results between a pure random search algorithm and the GA are also presented.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.1992.226416</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992, Vol.4, p.41-44 vol.4
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_226416
source IEEE Xplore All Conference Series
subjects Adaptive filters
Digital filters
Filtering algorithms
Finite impulse response filter
Genetics
IIR filters
Learning automata
Least squares methods
Stability
Stochastic processes
title Genetic and learning automata algorithms for adaptive digital filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20and%20learning%20automata%20algorithms%20for%20adaptive%20digital%20filters&rft.btitle=%5BProceedings%5D%20ICASSP-92:%201992%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing&rft.au=Nambiar,%20R.&rft.date=1992&rft.volume=4&rft.spage=41&rft.epage=44%20vol.4&rft.pages=41-44%20vol.4&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780305328&rft.isbn_list=0780305329&rft_id=info:doi/10.1109/ICASSP.1992.226416&rft_dat=%3Cieee_CHZPO%3E226416%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i174t-1fa420eba537b88e6e0cf57c84bac52f2711805b597e33fbe659ae42965759ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=226416&rfr_iscdi=true