Loading…

Nonnumeric belief structures

The nonnumeric belief, a counterpart of the belief function, is defined as the lower envelope of a family of incidence mappings (i.e., the nonnumeric counterpart of probability functions). Likewise, the nonnumeric conditional belief is defined as the lower envelope of a family of conditional inciden...

Full description

Saved in:
Bibliographic Details
Main Authors: Wong, S.K.M., Wang, L.S., Yao, Y.Y.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 277
container_issue
container_start_page 274
container_title
container_volume
creator Wong, S.K.M.
Wang, L.S.
Yao, Y.Y.
description The nonnumeric belief, a counterpart of the belief function, is defined as the lower envelope of a family of incidence mappings (i.e., the nonnumeric counterpart of probability functions). Likewise, the nonnumeric conditional belief is defined as the lower envelope of a family of conditional incidence mappings. Such definitions are consistent with the corresponding definitions for belief functions. There exists a closed-form expression for the proposed conditional nonnumeric beliefs, which is useful in qualitative, nonmonotonic reasoning, and conditional logic.< >
doi_str_mv 10.1109/ICCI.1992.227656
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_227656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>227656</ieee_id><sourcerecordid>227656</sourcerecordid><originalsourceid>FETCH-ieee_primary_2276563</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDSw1Pd0dvbUM7S0NNIzMjI3MzVjZuC1NLcwsDC0MDOyMDQy4mDgLS7OMgACE1NDc2NzTgYZv_y8vNLc1KLMZIWk1JzM1DSF4pKi0uSS0qLUYh4G1rTEnOJUXijNzSDl5hri7KGbmZqaGl9QlJmbWFQZD7HKGK8kAMdgK9Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonnumeric belief structures</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wong, S.K.M. ; Wang, L.S. ; Yao, Y.Y.</creator><creatorcontrib>Wong, S.K.M. ; Wang, L.S. ; Yao, Y.Y.</creatorcontrib><description>The nonnumeric belief, a counterpart of the belief function, is defined as the lower envelope of a family of incidence mappings (i.e., the nonnumeric counterpart of probability functions). Likewise, the nonnumeric conditional belief is defined as the lower envelope of a family of conditional incidence mappings. Such definitions are consistent with the corresponding definitions for belief functions. There exists a closed-form expression for the proposed conditional nonnumeric beliefs, which is useful in qualitative, nonmonotonic reasoning, and conditional logic.&lt; &gt;</description><identifier>ISBN: 9780818628122</identifier><identifier>ISBN: 081862812X</identifier><identifier>DOI: 10.1109/ICCI.1992.227656</identifier><language>eng</language><publisher>IEEE Comput. Soc. Press</publisher><subject>Calculus ; Closed-form solution ; Computer science ; Logic ; Uncertainty ; Upper bound</subject><ispartof>Proceedings ICCI `92: Fourth International Conference on Computing and Information, 1992, p.274-277</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/227656$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27901,54894</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/227656$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Wang, L.S.</creatorcontrib><creatorcontrib>Yao, Y.Y.</creatorcontrib><title>Nonnumeric belief structures</title><title>Proceedings ICCI `92: Fourth International Conference on Computing and Information</title><addtitle>ICCI</addtitle><description>The nonnumeric belief, a counterpart of the belief function, is defined as the lower envelope of a family of incidence mappings (i.e., the nonnumeric counterpart of probability functions). Likewise, the nonnumeric conditional belief is defined as the lower envelope of a family of conditional incidence mappings. Such definitions are consistent with the corresponding definitions for belief functions. There exists a closed-form expression for the proposed conditional nonnumeric beliefs, which is useful in qualitative, nonmonotonic reasoning, and conditional logic.&lt; &gt;</description><subject>Calculus</subject><subject>Closed-form solution</subject><subject>Computer science</subject><subject>Logic</subject><subject>Uncertainty</subject><subject>Upper bound</subject><isbn>9780818628122</isbn><isbn>081862812X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpjYJAwNNAzNDSw1Pd0dvbUM7S0NNIzMjI3MzVjZuC1NLcwsDC0MDOyMDQy4mDgLS7OMgACE1NDc2NzTgYZv_y8vNLc1KLMZIWk1JzM1DSF4pKi0uSS0qLUYh4G1rTEnOJUXijNzSDl5hri7KGbmZqaGl9QlJmbWFQZD7HKGK8kAMdgK9Y</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Wong, S.K.M.</creator><creator>Wang, L.S.</creator><creator>Yao, Y.Y.</creator><general>IEEE Comput. Soc. Press</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>Nonnumeric belief structures</title><author>Wong, S.K.M. ; Wang, L.S. ; Yao, Y.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_2276563</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Calculus</topic><topic>Closed-form solution</topic><topic>Computer science</topic><topic>Logic</topic><topic>Uncertainty</topic><topic>Upper bound</topic><toplevel>online_resources</toplevel><creatorcontrib>Wong, S.K.M.</creatorcontrib><creatorcontrib>Wang, L.S.</creatorcontrib><creatorcontrib>Yao, Y.Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wong, S.K.M.</au><au>Wang, L.S.</au><au>Yao, Y.Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonnumeric belief structures</atitle><btitle>Proceedings ICCI `92: Fourth International Conference on Computing and Information</btitle><stitle>ICCI</stitle><date>1992</date><risdate>1992</risdate><spage>274</spage><epage>277</epage><pages>274-277</pages><isbn>9780818628122</isbn><isbn>081862812X</isbn><abstract>The nonnumeric belief, a counterpart of the belief function, is defined as the lower envelope of a family of incidence mappings (i.e., the nonnumeric counterpart of probability functions). Likewise, the nonnumeric conditional belief is defined as the lower envelope of a family of conditional incidence mappings. Such definitions are consistent with the corresponding definitions for belief functions. There exists a closed-form expression for the proposed conditional nonnumeric beliefs, which is useful in qualitative, nonmonotonic reasoning, and conditional logic.&lt; &gt;</abstract><pub>IEEE Comput. Soc. Press</pub><doi>10.1109/ICCI.1992.227656</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818628122
ispartof Proceedings ICCI `92: Fourth International Conference on Computing and Information, 1992, p.274-277
issn
language eng
recordid cdi_ieee_primary_227656
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Calculus
Closed-form solution
Computer science
Logic
Uncertainty
Upper bound
title Nonnumeric belief structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonnumeric%20belief%20structures&rft.btitle=Proceedings%20ICCI%20%6092:%20Fourth%20International%20Conference%20on%20Computing%20and%20Information&rft.au=Wong,%20S.K.M.&rft.date=1992&rft.spage=274&rft.epage=277&rft.pages=274-277&rft.isbn=9780818628122&rft.isbn_list=081862812X&rft_id=info:doi/10.1109/ICCI.1992.227656&rft_dat=%3Cieee_6IE%3E227656%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_2276563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=227656&rfr_iscdi=true