Loading…

A recurrent dynamic network for associative recall

A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and assoc...

Full description

Saved in:
Bibliographic Details
Main Authors: Hou, J., Salam, F.M.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 31
container_issue
container_start_page 28
container_title
container_volume
creator Hou, J.
Salam, F.M.A.
description A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.< >
doi_str_mv 10.1109/ICSYSE.1992.236950
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_236950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>236950</ieee_id><sourcerecordid>236950</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-a6c752e38d164af3539c44c9445a009fd7ca0997714488c2628f94fb4b89bfd53</originalsourceid><addsrcrecordid>eNotj01LxDAYhAMiKGv_wJ7yB1rz8ebjPS5l1YUFD6sHT0uaJhDttpJUZf-9lXUYmMvDDEPImrOGc4b3u_bwdtg2HFE0QmpU7IpUaCxbLJmRoG9IVco7WwSKM4a3RGxoDv4r5zDOtD-P7pQ8HcP8M-UPGqdMXSmTT25O3-GPdMNwR66jG0qo_nNFXh-2L-1TvX9-3LWbfZ24gbl22hslgrQ91-CiVBI9gEcA5Zbp2BvvGKIxHMBaL7SwESF20FnsYq_kiqwvvSmEcPzM6eTy-Xg5Jn8BJHtDFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A recurrent dynamic network for associative recall</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hou, J. ; Salam, F.M.A.</creator><creatorcontrib>Hou, J. ; Salam, F.M.A.</creatorcontrib><description>A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.&lt; &gt;</description><identifier>ISBN: 9780780307346</identifier><identifier>ISBN: 0780307348</identifier><identifier>DOI: 10.1109/ICSYSE.1992.236950</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Circuits ; Computer networks ; Electronic mail ; Equations ; Laboratories ; Mathematical model ; Neural network hardware ; Neural networks ; Neurons</subject><ispartof>[Proceedings 1992] IEEE International Conference on Systems Engineering, 1992, p.28-31</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/236950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/236950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, J.</creatorcontrib><creatorcontrib>Salam, F.M.A.</creatorcontrib><title>A recurrent dynamic network for associative recall</title><title>[Proceedings 1992] IEEE International Conference on Systems Engineering</title><addtitle>ICSYSE</addtitle><description>A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.&lt; &gt;</description><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Computer networks</subject><subject>Electronic mail</subject><subject>Equations</subject><subject>Laboratories</subject><subject>Mathematical model</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Neurons</subject><isbn>9780780307346</isbn><isbn>0780307348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LxDAYhAMiKGv_wJ7yB1rz8ebjPS5l1YUFD6sHT0uaJhDttpJUZf-9lXUYmMvDDEPImrOGc4b3u_bwdtg2HFE0QmpU7IpUaCxbLJmRoG9IVco7WwSKM4a3RGxoDv4r5zDOtD-P7pQ8HcP8M-UPGqdMXSmTT25O3-GPdMNwR66jG0qo_nNFXh-2L-1TvX9-3LWbfZ24gbl22hslgrQ91-CiVBI9gEcA5Zbp2BvvGKIxHMBaL7SwESF20FnsYq_kiqwvvSmEcPzM6eTy-Xg5Jn8BJHtDFw</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Hou, J.</creator><creator>Salam, F.M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>A recurrent dynamic network for associative recall</title><author>Hou, J. ; Salam, F.M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-a6c752e38d164af3539c44c9445a009fd7ca0997714488c2628f94fb4b89bfd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Computer networks</topic><topic>Electronic mail</topic><topic>Equations</topic><topic>Laboratories</topic><topic>Mathematical model</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, J.</creatorcontrib><creatorcontrib>Salam, F.M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, J.</au><au>Salam, F.M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A recurrent dynamic network for associative recall</atitle><btitle>[Proceedings 1992] IEEE International Conference on Systems Engineering</btitle><stitle>ICSYSE</stitle><date>1992</date><risdate>1992</risdate><spage>28</spage><epage>31</epage><pages>28-31</pages><isbn>9780780307346</isbn><isbn>0780307348</isbn><abstract>A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/ICSYSE.1992.236950</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780307346
ispartof [Proceedings 1992] IEEE International Conference on Systems Engineering, 1992, p.28-31
issn
language eng
recordid cdi_ieee_primary_236950
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Circuits
Computer networks
Electronic mail
Equations
Laboratories
Mathematical model
Neural network hardware
Neural networks
Neurons
title A recurrent dynamic network for associative recall
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20recurrent%20dynamic%20network%20for%20associative%20recall&rft.btitle=%5BProceedings%201992%5D%20IEEE%20International%20Conference%20on%20Systems%20Engineering&rft.au=Hou,%20J.&rft.date=1992&rft.spage=28&rft.epage=31&rft.pages=28-31&rft.isbn=9780780307346&rft.isbn_list=0780307348&rft_id=info:doi/10.1109/ICSYSE.1992.236950&rft_dat=%3Cieee_6IE%3E236950%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i174t-a6c752e38d164af3539c44c9445a009fd7ca0997714488c2628f94fb4b89bfd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=236950&rfr_iscdi=true