Loading…
A recurrent dynamic network for associative recall
A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and assoc...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 31 |
container_issue | |
container_start_page | 28 |
container_title | |
container_volume | |
creator | Hou, J. Salam, F.M.A. |
description | A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.< > |
doi_str_mv | 10.1109/ICSYSE.1992.236950 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_236950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>236950</ieee_id><sourcerecordid>236950</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-a6c752e38d164af3539c44c9445a009fd7ca0997714488c2628f94fb4b89bfd53</originalsourceid><addsrcrecordid>eNotj01LxDAYhAMiKGv_wJ7yB1rz8ebjPS5l1YUFD6sHT0uaJhDttpJUZf-9lXUYmMvDDEPImrOGc4b3u_bwdtg2HFE0QmpU7IpUaCxbLJmRoG9IVco7WwSKM4a3RGxoDv4r5zDOtD-P7pQ8HcP8M-UPGqdMXSmTT25O3-GPdMNwR66jG0qo_nNFXh-2L-1TvX9-3LWbfZ24gbl22hslgrQ91-CiVBI9gEcA5Zbp2BvvGKIxHMBaL7SwESF20FnsYq_kiqwvvSmEcPzM6eTy-Xg5Jn8BJHtDFw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A recurrent dynamic network for associative recall</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hou, J. ; Salam, F.M.A.</creator><creatorcontrib>Hou, J. ; Salam, F.M.A.</creatorcontrib><description>A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.< ></description><identifier>ISBN: 9780780307346</identifier><identifier>ISBN: 0780307348</identifier><identifier>DOI: 10.1109/ICSYSE.1992.236950</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Circuits ; Computer networks ; Electronic mail ; Equations ; Laboratories ; Mathematical model ; Neural network hardware ; Neural networks ; Neurons</subject><ispartof>[Proceedings 1992] IEEE International Conference on Systems Engineering, 1992, p.28-31</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/236950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/236950$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hou, J.</creatorcontrib><creatorcontrib>Salam, F.M.A.</creatorcontrib><title>A recurrent dynamic network for associative recall</title><title>[Proceedings 1992] IEEE International Conference on Systems Engineering</title><addtitle>ICSYSE</addtitle><description>A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.< ></description><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Computer networks</subject><subject>Electronic mail</subject><subject>Equations</subject><subject>Laboratories</subject><subject>Mathematical model</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Neurons</subject><isbn>9780780307346</isbn><isbn>0780307348</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1992</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01LxDAYhAMiKGv_wJ7yB1rz8ebjPS5l1YUFD6sHT0uaJhDttpJUZf-9lXUYmMvDDEPImrOGc4b3u_bwdtg2HFE0QmpU7IpUaCxbLJmRoG9IVco7WwSKM4a3RGxoDv4r5zDOtD-P7pQ8HcP8M-UPGqdMXSmTT25O3-GPdMNwR66jG0qo_nNFXh-2L-1TvX9-3LWbfZ24gbl22hslgrQ91-CiVBI9gEcA5Zbp2BvvGKIxHMBaL7SwESF20FnsYq_kiqwvvSmEcPzM6eTy-Xg5Jn8BJHtDFw</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Hou, J.</creator><creator>Salam, F.M.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1992</creationdate><title>A recurrent dynamic network for associative recall</title><author>Hou, J. ; Salam, F.M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-a6c752e38d164af3539c44c9445a009fd7ca0997714488c2628f94fb4b89bfd53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Computer networks</topic><topic>Electronic mail</topic><topic>Equations</topic><topic>Laboratories</topic><topic>Mathematical model</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Hou, J.</creatorcontrib><creatorcontrib>Salam, F.M.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hou, J.</au><au>Salam, F.M.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A recurrent dynamic network for associative recall</atitle><btitle>[Proceedings 1992] IEEE International Conference on Systems Engineering</btitle><stitle>ICSYSE</stitle><date>1992</date><risdate>1992</risdate><spage>28</spage><epage>31</epage><pages>28-31</pages><isbn>9780780307346</isbn><isbn>0780307348</isbn><abstract>A model for recurrent artificial neural networks which can store any number of any prespecified patterns as energy local minima is presented. Therefore, all the prespecified patterns can be stored and recalled. Some examples are given to show how this model can be used in image recognition and association. Generalization of the energy function is discussed. Variations of this model are also investigated for performance improvement and potential hardware implementation.< ></abstract><pub>IEEE</pub><doi>10.1109/ICSYSE.1992.236950</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780307346 |
ispartof | [Proceedings 1992] IEEE International Conference on Systems Engineering, 1992, p.28-31 |
issn | |
language | eng |
recordid | cdi_ieee_primary_236950 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Circuits Computer networks Electronic mail Equations Laboratories Mathematical model Neural network hardware Neural networks Neurons |
title | A recurrent dynamic network for associative recall |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20recurrent%20dynamic%20network%20for%20associative%20recall&rft.btitle=%5BProceedings%201992%5D%20IEEE%20International%20Conference%20on%20Systems%20Engineering&rft.au=Hou,%20J.&rft.date=1992&rft.spage=28&rft.epage=31&rft.pages=28-31&rft.isbn=9780780307346&rft.isbn_list=0780307348&rft_id=info:doi/10.1109/ICSYSE.1992.236950&rft_dat=%3Cieee_6IE%3E236950%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i174t-a6c752e38d164af3539c44c9445a009fd7ca0997714488c2628f94fb4b89bfd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=236950&rfr_iscdi=true |