Loading…
Performance of a flux locked series SQUID array
The operation of a SQUID array with 100 DC SQUIDs has been demonstrated using a single flux-locked loop. The SQUID array had a maximum dynamic range of +or-1.3*10/sup 8// square root (Hz) in the low frequency region, a high slewing rate over a wide frequency range, and an extrinsic white noise energ...
Saved in:
Published in: | IEEE transactions on applied superconductivity 1993-12, Vol.3 (4), p.3061-3065 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The operation of a SQUID array with 100 DC SQUIDs has been demonstrated using a single flux-locked loop. The SQUID array had a maximum dynamic range of +or-1.3*10/sup 8// square root (Hz) in the low frequency region, a high slewing rate over a wide frequency range, and an extrinsic white noise energy sensitivity of 6*10/sup -31/J/Hz. These data were obtained with a very simple feedback circuit made from three inexpensive operational amplifiers that operated in the DC-feedback mode. The feedback loop did not have any impedance matching circuit between the SQUID array and the room temperature electronics. Our results show that a SQUID array can have a significant impact on those applications that demand good noise performance and a very high dynamic range.< > |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.251805 |